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How a Robot Works

What is covered in this chapter:

• The basic hardware and software components that a robot consists of.
• The techniques we can apply to make a robot ready for interacting with
people.

As a way of thinking about how a robot works, let us role-play by imagining
being a robot. We might think we can do a lot of things, but we soon find
out our capabilities are severely limited. If we are newly built robots, without
appropriate software, our brains are entirely empty. We cannot do anything—
move, know where we are, understand what is around us, even ask for help.
We find the experience of being a robot rather strange and difficult to imagine.
The main source of strangeness is that the new robot’s brain is nothing like a
human brain, not even an infant’s. The robot has no basic instincts, no goals,
no memory, no needs, no learning capabilities, and no ability to sense or act.
To make a robot system, we need to integrate, and at least partially develop,
hardware and software together to enable the robot to sense and act in the
world.
This chapter is written for readers who have a limited technical background

in intelligent interactive robotics. It describes the common components of
a robot and how they are connected to enable participation in interaction.
Section 3.1 explains basic ideas about the components needed to build a robot.
Section 3.2 explains the types of hardware. Section 3.3 covers the integration
of hardware and software and addresses the perception (e.g., computer vision),
planning, and action control of the robot. Section 3.4 introduces sensors,
such as cameras, range finders, and microphones, and Section 3.5 introduces
actuators. Section 3.6 discusses software specifically designed for connecting
other pieces of software to form one coherent program. Section 3.7 covers
how to model interaction between the robot’s program and the environment,
whereas Section 3.8 goes specifically into artificial intelligence (AI) and
machine learning. Finally, Section 3.9 discusses the most pressing limitations
of robotics.
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22 How a Robot Works

3.1 The making of a robot

To build a robot, one of the first steps is to establish connections between
the robot’s sensors, computer, and motors so that the robot is able to sense,
interpret what it senses, plan actions, and then act them out. Once the robot is
connected, for example, to a camera, its computer can read the data the camera
provides. But the camera image is nothing more than a large table of numbers,
similar to the following table:

9 15 10
89 76 81
25 34 29

From these numbers, can you guess what the robot is seeing? Perhaps a
ball, an apple, or a fork? Assuming that each value in the table represents the
lightness value of one sensor element in the camera, we can translate those
numbers into a graphic that is more meaningful to humans (see Figure 3.1),
but the graphic remains meaningless to the robot.
You might be able to see a line in the image shown in Figure 3.1, but a

robot has no understanding of what a line is. This line might be the edge
of a cliff from which the robot could fall and damage itself. But the robot
does not have a concept of height or gravity. It would not comprehend that
it could fall if it crossed this line. It does not know that if it fell, it would
likely come to rest upside down. Without the appropriate sensors, it would
not register that it would be falling, nor that it abruptly came to a stop as
it encountered the ground. It would not even recognize that its arm would be
broken. In other words, even concepts that are vitally important for interacting
with and surviving in the world around us that are innate in humans have to
be explicitly programmed in a robot.

Figure 3.1 The
camera’s data
translated into a grid
of grayscale pixels.

A robot, in essence, is a computer with a body. Any functionality needs
to be programmed into the robot. A problem that all robots have to deal
with is that although their sensors and motors are sufficient for operating
in this world, their intelligence is not. Any concept of interest to roboticists
needs to be programmed into the robot. This requires a lot of time and effort
and often involves many cycles of trial and error. The analogue world out
there is converted into a digital world, and translating tables of numbers into
meaningful information and meaningful responses is one of the core goals of
AI. Being able to identify a face from a large table of values, recognizing if a
person has been seen before, and knowing that person’s name are all skills
that require programming or learning. Thus, the progress of human–robot
interaction (HRI) is constrained by the progress that is made in the field of
AI. Robotics engineers integrate sensors, software, and actuators to enable the
robot to make sense of and interact with its physical and social environment.
An engineer might, for example, use accelerometer sensors, which can detect
acceleration and Earth’s gravitational pull, to read the orientation of the robot
and determine if it has fallen. A cliff sensor, consisting of a small infrared
light source pointing down and a light sensor, can be used by the robot to
avoid falling down a staircase.
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3.2 Robot types 23

Typical problems that robot engineers have to solve for the robot include
the following:

• What kind of body does the robot have? Does it have wheels? Does it have
arms?

• How will the robot know its location in space?
• How does the robot control and position its body parts—for example, arms,
legs, wheels?

• What does the space around the robot look like? Are there obstacles,
cliffs, doors? What does the robot need to be able to perceive about this
environment to move safely?

• What are the robot’s goals? How does it know when it has achieved them?
• Are there people around? If so, where are they, and who are they? How will
the robot know?

• Is a person looking at the robot? Is someone talking to it? If so, what does
the robot understand from these cues?

• What is the human trying to do?What does the person want the robot to do?
How can we make sure the robot understands this?

• What should the robot do, and how should the robot react?
• Does the robot have enough battery power?

To address these questions, HRI researchers need to build or choose
appropriate hardware and an appropriate morphology for the robot and then
develop relevant programs—the software—that can tell the robot what to do
with its body.

3.2 Robot types

At the time of this writing, a number of robots have been produced for
the consumer market. Section 2.3 introduced some of the landmark robots,
although this list is far from complete. For a more complete overview, we refer
to the databases created by Anthropomorphic roBOT (ABOT) (www.abot
database.info) and the Institute of Electrical and Electronics Engineers (IEEE)
(https://robotsguide.com/robots/). Although not all consumer robots become
domestic staples, these commercial robots are often suitable platforms for HRI
research. Commercially available robots can be categorized in a number of
ways, including the following: social robots and drones, humanoids, androids,
zoomorphic robots, virtual agents, telepresence and tele-operation robots,
projection robots, and industrial robots. We will discuss these types in this
section.
As covered in Chapter 1, social robots are robots that are designed to

interact with humans (Hegel et al., 2009). This does not necessarily mean
that a robot has a humanlike shape; as will be explained in Section 4.2 and
Chapter 8, humanswill readily perceive humanlike traits in other agents if they
give off certain social cues or behave in certain ways. Thus, even a robot as
simple as the Keepon (see Figure 2.7) can be considered a social robot because
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24 How a Robot Works

its behavior creates the impression of a social presence. Obviously, different
social robots will have different levels of complexity in their interaction. Paro,
the baby seal robot (see Figure 2.8), can move its tail and open and close its
eyes based on haptic feedback, but it does not communicate in other ways.
In contrast, the iCub is shaped like a child (see Figure 3.8) and can display a
variety of facial expressions, both of which create a myriad of ways to engage
in social interaction.
Drones, and in particular, social drones, are flying robots that co-share space

with humans (Obaid et al., 2020; Baytas et al., 2019; Johal et al., 2022) and
can be used for applications in the household or education, among other use
cases. Contrary to humanoid robot types, which will be discussed next, social
drones commonly do not have a humanlike appearance.
Humanoid robots are robots that follow a general humanlike outline for

their hardware. This means that generally speaking, the robot will be bipedal
(although sometimes the legs are merged into a shaft on wheels, as is the case
with Wakamaru and Pepper; see Figures 2.6 and 6.4); have a torso with a
set of arms; and have a head with at least some facial features, such as eyes
and a mouth. Well-known examples of humanoid robots include Nao, Pepper,
Asimo, Robovie, and iCub.
Further humanlike in appearance are the android robots, which aim to

mimic human looks as closely as possible. Although creating an exact replica
of a human face and body out of silicon may be doable, animating it in
such a way that it moves in a natural and humanlike way comes with its
own set of challenges and issues, as discussed in greater detail in Section
4.2.1. Well-known androids include Kokoro and the Geminoid HI 4 robots
(see Figure 4.5; see also Figure 4.7). Rather than trying to follow a human
outline, zoomorphic robots are modeled after an animal shape. This can
be an existing animal: for example, the Aibo is modeled after a dog (see
Figures 2.10 and 11.1), the Paro after a baby seal (see Figure 2.8), and the
Pleo after a baby sauropod dinosaur (see Figure 11.5). However, the robot’s
designer can also take some artistic freedom in their design and come up
with their own fantasy animal, as was done in the creation of the Furby (see
Figure 3.2).

Figure 3.2 The
Furby (1998–2016)
is a commercial
zoomorphic robot
that was particularly
popular in the late
1990s.

An interesting in-between form of virtual assistants and embodied robots
is the projection robots. These robots consist of a physical husk on which
features are projected (see Figure 3.3). The benefits of this layout are that
it becomes possible to mimic subtle movements, such as facial expressions,
and that the appearance of the robot (e.g., skin color, gender) can be easily
changed. At the same time, the animations of this robot remain projected rather
than actual movements, and to our knowledge, there is no robot available yet
that combines a projection with animated embodiment that would allow the
robot to manipulate its environment.
Strictly speaking, virtual agents aren’t robots: they are animated represen-

tations of an agent that is presented on a screen (e.g., a computer, tablet, or
smartphone). Often, these agents are linked up with AI programs that can
process spoken or written language commands and provide a response. These
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3.3 System architecture 25

Figure 3.3 The
Furhat robot
combines a virtual
face with a
hardware
embodiment
through projection.
(Source: Furhat
Robotics)

applications have found their way into many areas, such as customer service,
healthcare, sales, and education (Lugrin et al., 2022).
Telepresence robots can also be used as platforms for HRI research. Many

different types exist on the market, including mobile versions, such as the
Beam, and desktop versions like Kubi. Small mobile robots carrying a screen
displaying a friendly face are being developed, soon to be ready for release in
the consumer market.
Although commercially available robot hardware provides a wide variety

of morphologies and sensing and programming capabilities, every robot
is limited in what it can do; its appearance and capabilities constrain the
interactions it can engage in. Researchers, therefore, also conceive and build
their own robots, which range from simple desktop and mobile platforms with
or without a manipulator to very humanlike android robots. The choice of a
particular morphology for a robot to be used in HRI research often depends
on the capabilities needed for the expected task (e.g., whether it needs to be
able to pick up objects), the type of interaction (e.g., petlike interactions can
benefit from an animal-like robot), and people’s expectations and perceptions
of different morphologies (e.g., humanoids may be expected to behave and be
intelligent in ways similar to humans).

3.3 System architecture

All the hardware components of the robot need to be connected to a computer
so that they can become interactive. The architecture of such a system can
typically be divided into layers. Each layer typically only communicates with
its direct neighbors (see Figure 3.4).

3.3.1 Hardware layers
At the bottom of the system are the different hardware components, such as
motors and sensors. They are connected with cables to one or more comput-
ers. Some robots do all processing on board, but many robots will offload
processing to other computers. In more recent robot software, the speech
recognition, computer vision, and storage of user data often happen in the
cloud, transmitted by internet-connected software services, typically operating
on a pay-per-use basis. The advantage of cloud-based computing is that the
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26 How a Robot Works

Figure 3.4 System
architecture for robots.
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robot has access to much more computing power and storage space than it
could ever carry on board. Smart speakers, such as Google Home and Amazon
Alexa, rely on cloud-based computing. However, a disadvantage is that when
a robot relies on cloud-based computing, it needs robust communication with
the cloud server. This is not necessarily guaranteed, particularly when a robot
is mobile. Thus, time-critical computing and computing used to guarantee
safety (e.g., emergency stops) are usually done on board.

3.3.2 Software layers
Above the hardware layers are the software layers. All the currently available
robots are controlled by software running on one or several computers. The
computers receive data from sensors and periodically send commands to the
actuators.
On the computer, there is an operating system (e.g., Windows, Linux),

which acts as the general platform allowing the software to access the
general hardware of the computer, such as access to disks and files, and
manages resources like memory and the central processing unit (CPU). The
drivers enable the operating system to communicate with specific hardware
components. These drivers normally come from the manufacturer of the
hardware components, but some of them might already come integrated
into the operating system. For example, when you plug a mouse into your
computer, you normally do not need to install any drivers.
Although application software can directly run on the operating system,

robotic applications often are run through middleware, consisting of many
small pieces of software modules. Middleware is considered a “software
glue,” being in the middle of software modules and the operating system (see
Section 3.6 for a more in-depth discussion).
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3.4 Sensors

Most social robots are equipped with sensors that allow them to gauge what
is happening in their environment. Many commonly used sensors are related
to the three most commonly used modalities in human interaction—vision,
hearing, and touch—but robots are not at all limited to human modes of
sensing. It is often helpful, therefore, to consider what types of information
the robot needs to perceive and what the most accurate and expedient ways
are for it to do so, rather than focusing on reproducing human capabilities.

3.4.1 Vision

Camera
A camera consists of lenses that focus an image onto a sensor surface.
The sensor surface is implemented using either a charge-coupled device
(CCD) or, more often, a complementary metal-oxide-semiconductor (CMOS)
technology. The basic element of a camera is a light sensor consisting mainly
of silicon that converts light into electrical energy. A camera consists of an
array of millions of these light sensors. Typically, color in a camera image
is represented using three values, red (R), green (G), and blue (B). Hence,
a camera is commonly referred to as an RGB camera. The sensors on the
sensor surface are not sensitive to the color of the light hitting them; they are
only sensitive to light intensity. To make an RGB camera, small color filters
are placed on top of the sensor surface, with each filter letting through only
red, green, or blue light (see Figure 3.5). Cameras are the richest and most

Figure 3.5 Array of
CCDs in RGB
camera.
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28 How a Robot Works

complex sensors available to robots, and through the wide adoption of the
RGB camera in digital cameras and smartphones, it has become miniaturized
and very cheap.
Most cameras have a more restricted field of view than human vision.

Whereas people can see more than 180 degrees, a typical camera might only
see 90 degrees, thus missing a lot of what is going on in the periphery. A robot
with a single camera will have a limited field of view and might have to rely
on other sensors, such as laser range finders or microphones, to give it a sense
of what is going on around it.
Most importantly, the camera image needs to be processed using computer-

vision algorithms in order for the robot to be able to respond to its visual
environment (see Section 3.8.2).

In computer-vision research, investigators often put cameras in the envi-
ronment to facilitate accurate vision. Although this is one of the realistic
approaches to yielding stable performance from computer vision, in
the HRI setting, it is sometimes discouraged because people can feel
uncomfortable around cameras. For example, in a project in which
elderly people were being assisted in their home by a robot, the engineers
would have loved to have cameras on the robot and in the home because
it would have allowed the robot to accurately track and interact with
people. However, the elderly participants were quite firm in their refusal
of the installation and use of cameras, forcing the team to use localization
beacons and laser range finders instead (Cavallo et al., 2014).

Depth sensors
Just as human vision uses stereo vision, knowledge about objects, and self-
motion to figure out the distance to objects, so can computer-vision algorithms
be used to extract a three-dimensional (3D) image from two-dimensional (2D)
information. Stereo cameras have been the technology of choice for a long
time, but in recent years, other technologies have emerged that allow us to see
depth directly, without the need for computer vision. These “depth sensors”
output a “depth image” or RGBD image (standing for red, green, blue, and
depth), a map of distances to objects in view of the camera.
Typically, a depth sensor can measure the distance to objects a few meters

away. Depending on the strength of the emitted infrared light, most depth
sensors only work reliably indoors. There are several ways of making such
depth sensors. One of the typical mechanisms is time of flight (TOF),
in which a device transmits invisible infrared light pulses and measures
the time taken between the moment when it transmitted the light and the
moment when it received the light’s reflection. Because the speed of light
is so high, the camera would need to record the timing of the returning
light with a precision that is out of reach of current electronics hardware.
Instead, the camera emits pulses of infrared light and measures the phase
difference between the light leaving the camera and the light returning to
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Figure 3.6 The
Microsoft Kinect
Azure DK for
Windows sensor.
(Source: Used with
permission from
Microsoft)

the camera. The Microsoft Kinect One, the second iteration of Microsoft’s
game controller, is based on this principle (see Figure 3.6). Despite being
developed as a game controller, it was quickly adopted by robot builders
and is now widely used to give robots a sense of depth. Combined with
appropriate software, the Kinect sensor can also perform skeleton tracking,
which is helpful for figuring out where people are and what they are doing.
Smaller devices are now available that return RGBD images based on a
range of different technologies, including TOF, structured light, and stereo
vision.

Laser range finders
Depth sensors are appropriate for measuring distances up to a few meters. In
order to measure distances at longer ranges, researchers frequently use a laser
range finder, also known as light detection and ranging (LiDAR). A typical
laser range finder can measure distances to objects up to 30 meters away, and
it samples the environment between 10 and 50 times per second. The accuracy
of laser range finders is within a few centimeters.
The basic mechanism of this type of sensor is also TOF (as explained

earlier, under Depth sensors). A laser range finder transmits a single beam of
infrared laser light and measures the distance by measuring the time between
the moment it transmits the laser beam and the time it receives its reflection.
Typically, the transmitter and receiver are on a rotating platform, sweeping the
laser beam around the environment. Thus, the device only measures distance
in a single 2D plane, that is, the plane of rotation of the rotating platform.
Robots can have range finders mounted at different heights to scan for

objects on a horizontal plane. Range finders close to the ground can sense
objects on the floor and people’s legs, whereas range finders that are set higher
up can be used to sense objects on a table or counter (see Figure 3.7).
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Figure 3.7 The PR2
robots (2010–2014):
Can you tell where the
range finder is?
(Source: Willow
Garage)

3.4.2 Audio
Microphones are commonly used devices for auditory sensing, and they
convert sound into electrical signals. Microphones have different sensitivity
profiles; some are omnidirectional, picking up all sounds in the environment,
whereas others are directional, only picking up sounds in a cone-shaped area
in front of the microphone. Combining multiple microphones into an array
allows us to use “beam-forming” techniques, which can separate sound signals
coming from a specific direction from ambient noises. Microphone arrays are
used for sound-source localization, that is, getting an accurate reading on the
angle of a given sound source with respect to its position in relation to the
microphone array.

3.4.3 Tactile sensors
Tactile sensors can be important in HRI, for example, when the robot is
physically guided by the user. Many different implementations exist, from
physical buttons or switches to capacitive sensors, such as those found on
touch screens.
The most commonly used tactile sensor is a mechanical push switch. It is

often used together with a bumper. When a robot collides with an object, the
switch is closed, allowing the robot to detect the collision. Pressure sensors and
capacity sensors, like the ones reading your finger’s position on a touch screen,
can also be used to detect physical contact with the environment. Pressure
sensors can be implemented using a range of technologies but usually contain a
material that changes its electrical properties (resistance or capacitance) when
force is applied (see Figure 3.8).
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Figure 3.8 The
iCub (2004–present)
humanoid has
capacitive tactile
sensors worked into
its fingers, palms,
and torso. (Source:
IIT Central
Research Lab
Genova)

Pressure sensors can help robots recognize whether and how hard they are
touching a person or object. They are also very useful for enabling robots to
pick up and handle objects appropriately. Tactile sensors can furthermore be
used to allow the robot to know whether someone is touching it, and the robot
can be programmed to respond accordingly. For example, the seal-like Paro
robot has a tactile sensor net all over its body that allows it to sense the location
and pressure with which a person is touching it and react by cooing for soft
strokes and crying out after a harder hit.

3.4.4 Other sensors
Various other sensors exist, many of which can be relevant to HRI. Light
sensors read the amount of light falling on the sensor and can be used to
sense a sudden change in light, signaling that something has changed in the
environment. When combined with a light source, they can be used to detect
objects. A simple and very effective obstacle sensor combines an infrared
light-emitting diode (LED) light with an infrared light sensor; when light
bounces back from objects in front of the sensor, it can determine the distance
to objects. This not only is used to detect obstacles in front of the robot but
can also be used to sense when people are approaching the robot.
In recent years, the inertial measurement unit (IMU) has become a popular

sensor. It combines three sensors—an accelerometer, a gyroscope, and a
magnetometer—and is used to read the rotation and motion of the sensor
or, more accurately, the rotational and translational acceleration. Recent
advances in micro-electrical manufacturing have allowed these sensors to be
miniaturized down to a few millimeters. They have become ubiquitous in
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32 How a Robot Works

mobile phones and miniature drones, and when used in a robot, they allow
the robot to sense if it falls or to keep track of where it has moved over time.
Far-infrared (FIR) sensors are cameras that are sensitive to long-wavelength

infrared light, which is emitted by warm bodies. They can be used to detect the
presence of people, as used in burglar alarms, or when integrated into an FIR
camera, they can be used to record an image of the temperature of the room.
FIR sensors are still expensive and are mainly used for thermal imaging, but
eventually, they may allow the robot to see people at night or in cluttered
environments.
It is important to realize that, unlike our own senses, sensors do not

necessarily need to be mounted on the robot. A robot might rely on a
ceiling-mounted camera to interpret the social environment, or it could use
a wall-mounted microphone array to localize who is speaking. The whole
environment could, in a sense, be considered part of a robot system.

3.5 Actuators

An actuator converts electrical signals into physical movements. A system
with one actuator typically realizes motion either on one straight line or on
one rotational axis. This means that the system has one degree of freedom
(DOF). By combiningmultiple motors, we can develop a robot that hasmotion
with multiple DOFs, allowing for navigation of a 2D plane or gesturing with
humanlike arms.

3.5.1 Motors
The standard actuator for robots is a direct-current (DC) servo motor (see
Figure 3.9). It typically consists of a DC motor and a microcontroller, with
a sensor such as a potentiometer or an encoder, which outputs the absolute
or relative position of the motor’s output axis. To control the speed, the
controller typically sends pulse-width modulation (PWM) signals to the DC
motor. PWM is an on/off pulse, literally switching the motor on for a few
milliseconds and then back off. This is done up to 100 times per second, and
the duration of the on phase against the off phase (known as the duty cycle)
determines the speed at which the motor rotates. The PWM signal controls
the speed of the motor, and the controller sets the position of the motor. This
is done through feedback control, where the controller continuously reads the
position of the motor and adjusts the motor’s PWM and direction to reach
or maintain a desired position. For motors used in a robot’s arms and head,
the controller typically performs position control to rotate the motor toward
a given commanded angle. For motors used in wheels on a mobile base,
the controller typically performs velocity control to rotate the motor at the
commanded velocity.
Robots can have different configurations and numbers ofmotors, depending

on the body shape and the functions they are meant to perform. Commercially
available cleaning robots, such as Roomba, typically have two motors driving
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Figure 3.9
Connecting servo
motors to each other
allows robots to
move around in
various ways, such
as in this robot arm.
(Source: Trossen
Robotics)

the wheels and one tactile sensor for moving around the room. Thus, Roomba
has two DOFs. A simple nodding robot may have one motor to control its
head direction, meaning that it has one DOF. A better-equipped humanoid
may have three DOFs for its head, controlling pan, tilt, and yaw; two arms
with four to seven DOFs; a mobile base with at least two motors; and sensors
for visual, auditory, and tactile sensing. A robot arm, such as the KUKA (see
Figure 3.10), must have at least six DOFs tomanipulate an object. Three DOFs
are necessary to locate its end effector (e.g., hand) to be in a position within a
reachable range of the object, and another three DOFs are needed to grasp the
object from any direction. A human arm can be approximated as an arm having
seven DOFs, with an additional redundant one DOF beyond the necessary six
DOFs for manipulation.
To grasp objects, a robot arm must have some type of end effector attached

at the end. A 1-DOF gripper can be used to grasp an object, but more complex
robot hands can have asmany as 16DOFs. Android robots, designed to closely
resemble humans, typically have many more (e.g., 50 or more) DOFs and
are able to control their facial expressions and other bodily movements in
relatively nuanced ways compared to simpler robots.
Motors come in many different sizes, speeds, and strengths and thus have

differing power needs. It is therefore important to consider from early on in
the design process how the motor specifications relate to the robot’s design
and what kinds of actions a robot will need to make, such as whether it will
need to pick up a one-kilogram bag or just needs to wave its arms, how big
the robot can be while still fitting in well with its environment, how quickly
it needs to respond to stimuli, and whether it needs to have a portable power
bank or can be plugged into the wall.
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Figure 3.10 KUKA
robot arm. (Source:
KUKA)

3.5.2 Pneumatic actuators
A pneumatic actuator uses a piston and compressed air. Air is delivered from
a compressor or from a vessel containing high-pressure air, which needs
to be attached to the robot in some way. Pistons typically can extend and
contract, depending on which valves are opened to let in the compressed air.
As opposed to electric motors, pneumatic actuators produce linear motion,
which is somewhat similar to human muscle motion, and are able to produce
accelerations and speeds that are difficult to achieve using electric motors.
Hence, they are often preferred for humanoid robots and android robots that
need to gesticulate at humanlike acceleration and velocity (see Figure 3.11).
The compressors that they need to operate can be quite loud, so it is important
to consider how to give the robot access to compressed air without marring
the interaction experience.

Figure 3.11
RoboThespian
(2005–present) uses
pneumatic actuators
to achieve the
acceleration
required to deliver a
convincing
theatrical
performance. The
robot can run for
around a day on a
scuba tank’s worth
of compressed gas,
although it can also
be attached to a
compressor.
(Source: Photo
copyright
Engineered Arts)

3.5.3 Speakers
To generate sounds and speech, standard loudspeakers are used. Speak-
ers are perhaps the cheapest actuator on the robot, but in terms of HRI,
they are indispensable. Where to place a speaker or speakers in the robot’s
body is an important factor to consider when designing a robot that will
interact with people. For example, Takayama (2008) showed that the rela-
tive height from which the voices of a user and an agent interacting with
each other are projected can influence who is seen to be dominant in the
interaction.
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3.6 Middleware

3.6.1 What is a middleware?
Middleware is software that sits among software components, such as
commonly available library modules and the application modules that the
developers created for a specific purpose, as well as the operating system of
the robot’s computer. It is often considered as the “software glue” because its
function is to ease the connection of those software components.
One of the functions of roboticsmiddleware is to deal with the heterogeneity

of hardware. Some applications are flexible about the type of sensors the robot
uses as long as similar sensor data are provided. For instance, a 3D LiDAR
could provide 3D distance data, but these data can be converted into the kind
of 2D data that a 2D laser range finder provides. On the middleware, we can
standardize a data format for 2D laser range finders so that we can use 2D laser
range finders from different companies, as well as other sensors that output
distance information, such as depth sensors and 3D LiDAR, in a similar way.
Another function of the robotics middleware is to help developers deal with

complexity and reuse software modules. Almost all robotic applications are
overly complex. It is unrealistic to create the whole application from scratch.
Moreover, applications are often not really interested in the raw sensory
data. They want to know abstracted information, for example, if a person is
standing in front of the robot. Therefore, once someone creates a functional
software module that enables the detection of a person in front of the robot,
other developers would hope to reuse such an established module for many
other robot applications, which would all be composed of somewhat different
software and hardware components. Thus, “modules” (software components)
are often shared within a community in which developers maintain and reuse
various well-behaving modules.
To better understand the benefits of middleware, we need to take a closer

look at how robots are built and how they work. Let’s assume that we have two
different robots, Marvin and S2E2. Both have two wheels to move around, but
S2E2’s wheels are 10 cm in diameter and Marvin’s wheels are 20 cm. Thus,
these robots are similar to the degree that they use the same methods to move
forward, backward, and around, but they are different in wheel size.
Programmers might want these two robots to move between the fridge and

the couch to deliver a beverage to their human user. For this purpose, the robots
need to drive forward for two meters. The motors themselves can only be
switched on or off. The wheels need a rotation sensor to detect how often they
have turned. It would be really useful if the behavior to deliver the beverage
developed for Marvin could also be used for S2E2. The middleware makes
this possible by abstracting the robots. It translates the two-meter distance to
6.37 rotations for S2E2 and 3.18 rotations for Marvin.
Driving a robot straight ahead for two meters may look like an easy task,

but it is not. It is possible for the wheels to slip, or a cat might dash across
the path. Hence, the robot requires sensors to measure its location within the
room. Marvin could have an ultrasound sensor mounted in front to measure
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the distance between itself and the couch ahead. S2D2 might have a LiDAR
sensor to measure the distance. Again, robots are similar, yet different. The
middleware abstracts the two sensors to simply the distance from itself to the
couch. The programmer can then monitor the progress of the robot and adjust
the duration for which the motors are switched on and off.
But what about the cat that crosses paths with the robot? Both robots need

to be able to move around an obstacle to drive to the couch. The problem
of dynamically planning and adjusting a path toward the couch requires yet
more sensors and software. These components should be able to communicate
with each other so that they can trigger, for example, evasion behaviors. Mid-
dleware allows the different components to directly communicate with each
other. Moreover, the problem of navigating the living room can be abstracted
to both robots so that the software developed becomes reusable. This dra-
matically speeds up the process of software development because solutions
for common problems can be shared. Path planning, obstacle avoidance, and
localization have all been solved as problems in themselves, independent of
the specific robot.

3.6.2 Robot Operating System
The Robot Operating System (ROS) is a middleware platform commonly
used in the robotics and HRI community.1 The name is somewhat misleading
because ROS actually is not an operating system, such as MacOS, Linux, or
Windows. Rather, it is a collection of software modules and tools. It deals with
communications between sensors and modules and offers libraries and tools
to support frequently used robot abilities, such as localization and navigation.
ROS has a large community of users who often share modules on public
open-source software repositories. The more developers use and extend this
middleware to different sensors and actuators, themore attractive this platform
becomes.
Some robot hardware developers decided not to develop their own software

platforms for their robots as, for example, Aldebaran did for its Nao and
Pepper robots. Instead, they offer modules for ROS to control and program
their robots. PAL Robotics is an example of a company that offers ROS
modules for its robots, such as TIAGo (see Figure 3.12).
Although ROS is playing an important role in the robotics and HRI

communities, it still remains middleware that requires technical expertise
to install, configure, and use. It is primarily useful for developers who are
already familiar with code editors, repositories, and libraries. For these, ROS
offers tools to launch code, introspection, debugging, visualization, plotting,
logging, and playback. It does not, however, contain animation tools (see
Section 3.7.2) or behavior editors (see Section 3.7.1). Unfortunately, there is
no visual programming environment that would allow users without technical
knowledge to click together behaviors and interactions.

1 See www.ros.org
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Figure 3.12 The
TIAGo robot family
uses ROS. (Source:
TIAGo Family by
PAL Robotics,
© PAL Robotics S.
L. 2024)

3.7 Applications

A robot is much more than a computer with a body. A computer operates in a
clean digital environment, whereas a robot needs to interface with the messy,
buzzing confusion of the real world. Not only does it need to make sense of
the world, but it also needs to do so in real-time. This environment requires a
radically different approach to robot software.

Architecture models
How should software for a robot be organized? A first rule of thumb, which
is applicable to any software, is that messy program code should be avoided.
Researchers and developers ideally aim to modularize software. One typical
approach is to follow the “sense-plan-act” model (see Figure 3.13), in which
inputs from sensors are processed using software modules specific to percep-
tion, which then convert sensor streams into high-order presentations. For
example, audio recordings of speech are converted into a text transcription,
or camera images are analyzed to report on the location of faces. Next, there
is a section that deals with “planning,” which plans the robot’s next actions
using information gleaned from the sensing process, then outputs commands
to modules for action.
For instance, a person-finding perception module reports on the location of

people detected in a 2D camera image and also returns the size of the heads,
indicative of how close people are to the robot. Next, the planning module
computes the head orientation for the robot to face the nearest speaker and
sends a command tomove the head to the output modules. The output modules
then calculate which angle is needed for the robot’s neckmotors and send these
to the low-level motor controllers.
The sense-plan-act approach is also known as the deliberative approach

because the robot deliberates its next action. Quite often, we want a robot to
respond quickly to external events, without spending a lot of time pondering
what to do next. In this case, we often program simple “behaviors” for the
robot (Brooks, 1991). Behaviors are tightly coupled sensor–action processing
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Figure 3.13
Sense-plan-act model. Sense Think Act

Figure 3.14 The
subsumption
behavior-based
architecture.
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loops that immediately respond to an external event. These can be used to
make an emergency stop when the robot is about to drive down the stairs, but
they can serve equally well in social interaction. When a loud bang is heard or
when a face appears in view, we want the robot to respond as fast as possible.
Act first; think later. Often, there are dozens of behaviors running on the robot,
and mechanisms exist to mediate between which behaviors are active and
which are not. One such mechanism is the subsumption architecture, which
organizes behavior into hierarchies, allowing a behavior to activate or inhibit
others (Brooks 1986; see Figure 3.14).
With this approach, even though the robot does not have an explicit “rep-

resentation” of the world, it can still behave in an apparently intelligent way.
For instance, if a cleaning robot uses two behaviors in parallel, one that avoids
the wall and another that makes it have a slight pull to the right, the resulting,
or emergent, behavior is that of wall following. Even though wall following
wasn’t programmed explicitly, it emerges from the interaction between two
simpler behaviors. The vacuum robot Roomba has been developed with such
an idea in mind.
In HRI studies, we typically find ourselves looking for a middle ground

between deliberative and reactive approaches. We want a reactive control
layer, which responds quickly to subsecond social events, followed by a
deliberative layer, which formulates a coherent response to slower elements
of the interaction, such as conversation.
In light of this, it is important to develop software that can be decomposed

into a number of smaller modules. Even if the complete wealth of a sense-
plan-act model is not needed, it is still common practice to separate modules
into perception, planning, and action.
Planning is diverse in terms of components and complexity and depends

heavily on the robot and the application. A cleaning robot may need to
compute the next location to clean, whereas a companion robot may need
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to make a decision on how it should initiate a conversation with a user. The
software on a Roomba vacuum will therefore be radically different from that
on a Pepper humanoid robot. For interactive robots, various forms of HRI
knowledge will be embedded into the various software modules.
Action modules take care of the actuation and social output of the robot,

such as nonverbal utterances, speech, hand gestures, and locomotion. For
instance, the speech-synthesis module may receive text and convert this into
spoken words, together with timing information that allows the robot to
accentuate its speech with appropriate gestures.

3.7.1 Behavior editors
A robot has to be programmed in order for it to behave in the way we want
it to. This can occur at different levels of detail. We could tell the right
wheel to switch on for two seconds. Many of these detailed instructions can
be combined into a more complex animation. When combining the robot
movements with sensory input, we can describe them as behaviors. Such a
behavior could be “greet the user when you see them for the first time.” These
behaviors can reuse many of the lower-level actions. For example, waving of
the arm could be used for the “greeting behavior” but also for the “call for
help” behavior.
The lower levels of programming are typically done on the top of the

middleware layer, as described in Section 3.6. Working at these lower levels
normally requires technical knowledge of the hardware and software of a
robot. Experts on human and robot behavior often have more expertise in
psychology and design but less experience with programming. Hence, it is
desirable to have behavior design software that can be used without the need
for in-depth programming skills.
Unfortunately, there are currently no open-source or commercial software

programs that fulfill this need for multiple social robots. The developers of
robots can provide tools for their specific robots, but these tools cannot be used
for other robots. A good example is the Choregraphe software fromAldebaran
(see Figure 6.9), which can be used to program the Nao and Pepper robots
without the need for writing code. Users can drag and drop boxes, such as
“Stand Up” or “Say Hello,” to the canvas and connect them with lines to
control the flow of the actions. This visual way of controlling the robot is,
strictly speaking, still a form of programming, but it is often considered more
intuitive. Children are often targeted by these visual programming paradigms,
such as through Scratch (Sweigart, 2016) from the Massachusetts Institute of
Technology (MIT; see Figure 3.15) or Blockly (Lovett, 2017) from Google.
Sony’s current fourth-generation Aibo dog (see Figure 2.10) uses a Blockly-
like environment to enable owners to program its behavior. It does not,
however, include the far superior MEdit motion editor (Cannon et al., 2007)
and programming options (R-Code and Open-R) used from the first to third
generations. These essential programming tools made it possible for Aibo to
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Figure 3.15 The
Scratch programming
environment. (Source:
MIT Media Lab)

Figure 3.16 The
Interaction Composer
programming
environment. (Source:
ATR)

be used in the Robocup competition from 1999 to 2008. Current Aibo dogs
are limited to home applications.
Another example of a platform-specific behavior editor is the Interaction

Composer by ATR. It is used to control the Robovie (see Figure 4.14) series
of robots. It has been used and further developed for over 14 years (Glas
et al., 2016). It uses the visual design programming paradigm in which users
connect elements through lines (see Figure 3.16). Although this software is
abstract enough to potentially be applied to other robots, in practice, it is still
closely linked to a couple of specific robots. Similar to Choregraphe, there
are currently no plans to further open this behavior editor for other robots.
Neither of them is available as open source, and hence others are also unable
to achieve this.
Simulations and virtual representations of robots are used to test the robots’

behavior before downloading and executing them on the actual robots. Gazebo
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software,2 for example, is widely used to simulate a robot in an environment.
It does not, however, easily include human users. The HRI community has
developed other simulation software that is specifically targeted at HRI, such
as MORSE (Lemaignan et al., 2014c). From here, it is only a small step to
building virtual robots in game engines.
Those working with modern game engines, such as Unity and Unreal,

have many similar challenges as HRI researchers. They have to program an
agent, either a robot or a character in a game, to interact with the user. This
includes animations, conversations, and interactions with the environment.
Game engines have already advanced tools for this purpose, and hence HRI
researchers can use them for the design and control of robot behavior. The
USARSim, for example, uses the Unreal Engine (Lewis et al., 2007), whereas
the Robot Engine is based on Unity (Bartneck et al., 2015b), and MORSE is
based on the open-source Blender Game Engine (Lemaignan et al., 2014c).
Connecting the robot’s hardware to the game engine can also easily be
achieved using serial port communication to an Arduino microcontroller. As
with any simulation of reality, it does not capture the noise and complexity
of the real world. Moreover, the most difficult part, humans, is not easily
included in the simulation. There are approaches to simulate simple behaviors
of humans in the simulations (Kaneshige et al., 2021), or virtual reality (VR)
techniques can be used to let human users interact with robots in the simulation
world (Inamura et al., 2021), although those tests are so far rather limited, only
serving as a pretest. Hence, it remains necessary to test the simulated behavior
in the real world. Robots are not, for example, able to move as fast as their
virtual counterparts.
Many of the behavior editors described in this section also include tools

to manage the spoken dialogue between human and robot. Section 7.3.3 in
Chapter 7 describes the functioning of dialogue managers in more detail.

3.7.2 Animation editors
Most of the animation software used to design the movement of robots
borrows from the classical principles of keynote animations that are widely
used in 2D and 3D animations. The animator uses a timeline and adds key
frames to it. The positions of all the robot’s actuators are defined as poses
in these key frames. The pose of the robot can be set by using software to
remotely control the robot into the right position, or users can simply move
the physical robot into the desired position.
The movement between these key-frame poses can then be interpolated

through the use of curves. One of the most popular curves is the fade-in
and fade-out curve, where the movement slowly accelerates at the start and
decelerates toward the end (see Figure 3.17).

2 See https://gazebosim.org/home.
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Figure 3.17 Key-frame
animation in the
Choregraphe software.
(1) Shows a key frame,
and (2) shows the
interpolated movement.
(Source: Software from
Aldebaran, screenshot
by Christoph Bartneck)

3.8 Artificial intelligence and machine learning

Many modules in the software perform some kind of intelligent processing.
Those often benefit from techniques known as artificial intelligence (AI) or
machine learning.
Although AI and machine learning are broad techniques, here we will focus

on introducing some key concepts most relevant to HRI. We provide a basic
introduction to supervised learning, followed by computer vision, which is one
of the typical applications of supervised learning (see Section 7.2 of Chapter 7
for another important application, speech recognition). Other types ofmachine
learning, such as generative models (to be used for speech synthesis and
language generation; see Chapter 7) and reinforcement learning, will also be
introduced.
There is a lot of recent attention to deep learning. In the media, the term AI

is sometimes used interchangeably with the termmachine learning. However,
AI covers a broad set of techniques that perform any form of intelligent
processing like humans do or beyond that. For instance, search algorithms
that are used for motion planning are part of AI techniques, but they do not
employ machine learning. Although general intelligence is one of the ultimate
goals of AI research, it is still far out of reach.
Machine learning represents diverse algorithms that gain benefit (“learn”)

from data. Among them, supervised learning is most typically used in HRI
applications. In this context, “supervised” concerns the fact that human devel-
opers manually provide labels to the training data. Supervised learning is usu-
ally used to address pattern-recognition problems, acquiring simple symbols
(labels) from complex data, such as computer vision and speech recognition.

3.8.1 Supervised learning
Supervised learning is one type of machine learning; it specifically requires
training data with correct labels. To understand what it is, let’s try to imagine
a specific task: classification of emotion in a human face. Using its camera, a
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robot took an RGB image of a human face. How can it tell whether this person
is wearing a happy or a surprised expression?
To solve this task, the robot should have a classifier program that is already

well trained. The classifier converts input data (i.e., a face) into some kind
of feature vector. Then, the trained classifier outputs the label (e.g., happy,
surprised, etc.) based on the input of the feature vector. For simplicity, let’s
assume that the feature vector is a list of motions of various facial muscles;
that is, there is one for each lip, another one for each eyebrow, and so forth.
We know that if people are happy, their lip corners typically go up, and
when surprised, their eyebrows are raised. Instead of explicitly programming
these rules, in supervised learning, we let the classifier acquire them from
the data. (Note that for the sake of simplicity, we made this example rather
straightforward. However, identifying and specifying the relation between an
input vector and a label is usually not at all simple. Thus, performance from
supervised learning usually clearly outperforms explicit programming of such
rules.)
What we provide to the classifier is training data. In our example, these

would be a lot of human faces with correct labels—that is, a lot of happy faces,
with all of them labeled as “happy,” and a lot of surprised faces, with all of
them labeled as “surprised.” Typically, providing labels to all these instances
constitutes intensive human labor. One by one, human workers have to check
each image of a face and add the appropriate labels. Then, with some training
algorithm (if successful), the classifiers acquire appropriate parameters or
rules that enable them to (mostly) correctly classify unseen data. This process
typically takes a huge amount of computation time and also requires a lot
of additional labor by developers, who would work with hyperparameters
(e.g., in the case of a neural network, how many layers, how those layers
connect, how input vectors are represented, number of iterations of updating
parameters, etc.).
Next, we explain the key elements and techniques for supervised learning.

Data sets
Machine learning requires data from which the robot can learn. This training
data set should contain a large number of examples of the thing to be learned,
which may be data from sensors or text, and generally has been manually
annotated by humans. For instance, there can be a data set with camera
images of human faces, and for each image, the emotion of the person is
labeled, such as “neutral,” “happy,” or “angry.” Such a set of example data
and labels is referred to as a data set. Typical data sets contain hundreds of
thousands or even millions of examples. The appropriate size of a data set
varies depending on the complexity of the target machine-learning problem.
Nevertheless, typically, larger data sets yield better performance.
Because the labeling process usually requires extensive labor, developers

often rely on crowdsourcing data (e.g., using Amazon Mechanical Turk).
However, we should be careful about the quality of the data as well as
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the quantity of the data. Having ambiguous or wrong labels will harm the
performance.
Because machine learning heavily relies on the amount and quality of

data, sharing data sets, as well as sharing classifier modules (e.g., speech-
recognition module), is a great community contribution. Researchers some-
times publish data sets together with their classification algorithm/system.
There are specific websites for sharing data sets, such as Kaggle.3

Feature extraction
To aid machine learning, sensor data are often preprocessed by converting
the sensor data into a more suitable representation and by extracting salient
features from the data. This process is called feature extraction. There are
many algorithms to extract features from raw sensor input. For instance,
edge detection highlights the pixels in an image where the intensity abruptly
changes, and a segmentation algorithm identifies regions in an image where
the colors are all similar, which can indicate a face, hair, or an eye (see
Figure 3.18).

Figure 3.18 Canny
edge detection of a
user operating the
buttons on a robot.

Features are, in essence, numbers. These features are often placed into a
feature vector, a row of numbers ready for processing. For instance, one could
count up the number of pixels detected as an edge and use it as one of the
variables of the feature vector. Researchers often manually analyze their data
sets and identify salient features. For instance, with careful observation, one
might find that a child fidgets more than an adult does; once such a feature is
found, one can add variation of motion to the feature vector.

Classification based on training
Supervised learning is often used for classification problems. In classification,
an algorithm decides, based on training data, what class an unknown data point
belongs to. For example, given a camera image of a person, the classifier
decides what emotion the person’s face shows. (Note: Another frequent
approach is regression, in which an algorithm provides a continuous number
from unknown data, such as estimating the age of a person based on their face.)
Suppose we can compute a one-dimensional (1D) feature vector represent-

ing people’s height and have a data set with two classes, “child” and “adult”
(i.e., each data point in the training data will have a label saying whether the
data point is a “child” or an “adult”). The classifier learns a threshold value
from the training data set (e.g., 150 cm) to distinguish the two classes.
In this case, the feature vector contains only a single feature, the height of

the user. We call this a 1D feature vector. Classification algorithms typically
work with thousands of features and try to recognize several classes, but
sometimes up to thousands of classes. Classification errors are more or
less inevitable. For instance, a tall child or short adult would be classified
incorrectly with the previously described 1D feature vector.

3 See www.kaggle.com/datasets
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Classification algorithms perform better (yield fewer errors) when having
access to more data. Ideally, we want classification algorithms to “generalize,”
meaning they correctly handle data that they have never been exposed to.
However, classification algorithms sometimes “overfit” to only the training
data. When this happens, the algorithm does really well on the training data,
but it performs poorly when confronted with new unseen data that are not
included in the training data.
There are various algorithms available for classification problems. Support

vector machines (SVMs) were traditionally often used with handcrafted
features. Nowadays, it is more standard to use deep learning if a large amount
of data is available. For the purpose of explainability, other algorithms, such
as a decision tree, are sometimes used.

Deep learning
Deep learning is a family of neural-network techniques enabled by the
increased availability of computational power. For instance, deep neural
networks (DNNs) rely on artificial neural networks with a large number of
layers of interconnected artificial neurons—hence the name “deep.”
When input is 2D (typically, an image), convolutional neural networks

(CNNs) are used. A CNN also has deep layers of neural networks. However,
it has specific typological constraints among neurons, representing the con-
volution procedure in image processing. It is good at the task of identifying
whether a target pattern exists somewhere within 2D data. For instance, in
an object-detection task, it is more important whether there is a “dog” in the
image or not rather than whether a “dog” is in the top left of the image. The
classifier using a CNN better generalizes to various objects regardless of their
locations in the image. See Section 3.8.2 for more information about computer
vision.
In cases where the input is a time series, a family of recurrent neural

networks (RNNs) is usually used. An RNN is a neural network, typically with
deep layers, and also has a mechanism to keep internal states (i.e., a memory).
At each time step, it receives an input, then provides an output label under the
condition of its own memory. Long short-term memory (LSTM) is one of the
famous RNNs. An RNN is often used for automatic speech recognition (ASR).
In an ASR task, the words to be recognized usually depend on what was
already spoken (e.g., if “how are ...” is already spoken, it is highly likely to hear
“you” as the next word). See Section 7.2 of Chapter 7 for more information
on speech recognition.
Another important deep-learning model is a transformer. It is used for

variant lengths of input, similar to RNNs, but it does not have a memory
mechanism. Instead, it comprises an encoding–decoding mechanism, along
with an attention mechanism that focuses on the important part of the encoded
input. It is often used for natural-language processing (NLP). The famous
examples are language models, such as BERT and GPT-3. When given a
sequence, they predict the next word, and most encode the sequence in doing
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so. Such a model is trained in an unsupervised manner. This encoding is often
used as embedding (a kind of feature vector) for other tasks by using fine-
tuning techniques (see Section 3.8.1). Moreover, it is also used for generative
tasks, such as image generation from natural-language input (see Figure 3.19),
for which the learning process involves huge pairs of images and text, typically
obtained from publicly available data (e.g., from Instagram).

Figure 3.19 AI
generated this image
using the Dall-e
platform. The text
prompt used was
“human playing
with robot.”

Are you struggling with writing an essay or scientific paper? No
problem—let a computer create it for you! Although students may be
most familiar with ChatGTP, other language models have been trained
specifically for generating scientific papers, such as SCIgena (generates
computer science papers, including figures and references) and Galactica
(can generate scientific papers for any field of study; Taylor et al., 2022).
It is important to note that language models do not understand the text
they generate; in essence, they are a slightly shinier version of the “text
completion” feature on your phone. Thus, although these programs
return texts that sound confident, professional, and overall convincing,
they often are factually incorrect.
Although these automatically generated papers are unlikely to pass the

peer-review process of good journals, they could still be used to generate
misinformation, and they thereby pose a serious threat to the integrity
of science. After only two days online, Meta decided to shut down the
demo web page for Galactica. The model itself is still available,b and
people familiar with computer science can continue to (ab)use it.
𝑎 See https://pdos.csail.mit.edu/archive/scigen/.
𝑏 See https://github.com/paperswithcode/galai

For any of the aforementioned deep learning, it takes a large amount
of computational power for training, but recent progress in using parallel
computing and graphical-processing units (GPUs) has allowed us to train these
networks within a reasonable amount of time.
Deep learning usually does not require careful feature extraction by hand.

Instead, deep learning discovers the relevant features from the data by itself.
A drawback is that deep learning requires huge amounts of data: typically,
millions of data points are needed to train an algorithm. For instance, Google
collected an enormous data set containing more than 230 billion data points
to train its speech-recognition algorithm. GPT-3 was trained on 45 terabytes
(TB) of text data from Wikipedia and books.
The complexity of deep learning makes it difficult to know exactly what

the network bases its decisions on (e.g., we may not know what features it has
identified or how it decided to use these features to come to a classification),
which can be particularly problematic for HRI outside of the laboratory when
we need to trust that the system will be robust, safe, and predictable. If the
robot does something wrong, we need to be able to figure out how to debug
and correct the system, as in the case of an autonomous Uber vehicle that had
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trouble classifying a person crossing the road and ran over the person as a
result (Marshall and Davies, 2018).

Transfer learning
The need for large data sets is a significant challenge for HRI because it is
difficult to collect large amounts of data in which humans and robots are
interacting.
The problem is more evident in deep learning. To moderate the problem,

there is a technique known as transfer learning or fine-tuning, which reuses
part of an existing trained network (often, embedding) and adds a small
amount of labeled data to only tune a small part of the neural network (often
near the output layer). By doing so, it learns new skills with a relatively small
data set.
For instance, big language models, such as BERT and GPT, which are

typically trained with trillions of sentences, are used for intent recognition
via transfer learning using possibly less than a hundred sentences Huggins
et al. (2021) (see Section 7.3 for a discussion of how intent recognition is used
in HRI).

3.8.2 Computer vision
Computer vision is an important area for HRI. In essence, computer vision
interprets a 2D array of numbers when working with single images, or a series
of 2D images recorded over a period of time when working with video data.
Computer vision can be rather straightforward and still very effective in the
context of HRI.Motion detection, for example, can be achieved by subtracting
two camera images taken just a fraction of a second apart. Any pixels that
captured motion will have a nonzero value, which in turn can be used to
calculate the region with the most motion. When used on a robot, a motion
detector lets the robot orient itself toward the areas with the most motion,
providing the illusion that the robot is aware of things moving, which, in the
context of HRI, often involves people gesturing or talking.
Another computer-vision technique relevant to HRI is the processing of

faces. The ability to detect faces in an image has advanced and can be
used, for example, to let the robot look people in the eye. Face recognition
(i.e., identifying a specific person in an image) is still a challenge, however.
Impressive progress has been made in the last decade, mainly fueled by the
evolution of deep learning, and it is now possible to reliably recognize and
distinguish between hundreds of people when they are facing the camera. But
face recognition typically fails when the user is seen from the side.
Skeleton tracking is another technique relevant to HRI. In skeleton tracking,

the software attempts to track where the user’s body and limbs are. This
technique was first used in gaming on the Microsoft Xbox console, with
software specific to the Kinect RGBD sensor, but is now a staple in many HRI
applications. Several software solutions exist, but deep learning has enabled

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



48 How a Robot Works

the reading of skeletons of dozens of users in complex scenarios from a single
simple camera image, without the need for an RGBD sensor. The software for
this, called OpenPose, is freely available and often used in HRI studies (Cao
et al., 2017).
There are many commercial and free software solutions that offer a range

of out-of-the-box computer-vision functionality. OpenCV is perhaps the best-
known offering; it is a free software library developed over 20 years. It can be
used for facial recognition, gesture recognition, motion understanding, object
identification, depth perception, and motion tracking, among others.
Because computer vision often requires a considerable amount of compu-

tational power, which is not realistic on small or cheaper robots, sometimes
the computer-vision process is addressed on the cloud. In this case, the video
stream of the robot is sent over an internet connection to servers on the cloud.
There are commercial-based cloud solutions for face recognition, person
identification, and image classification being sold on a per-use basis.

3.8.3 Reinforcement learning
Reinforcement learning is a very different approach to machine learning. It
does not require any training data prepared in advance and does not necessarily
need human supervision. Instead, a robot learns from successes and failures
by really trying to act. What it learns is the optimal policy, the best action for
each given state, which yields the best reward.
To understand how it works, imagine an example of a crawling robot that

has an arm with two DOFs (search on YouTube using such keywords as
“crawling robot Q-learning” to find examples). For simplicity, assume that
the robot has a choice of only four distinctive actions: stretch out its hand,
touch the ground, fold its arm, and lift its arm from the ground. The question
here is which action the robot should choose.
This is somewhat complex question because the best action depends on the

current pose of the robot. We know that to move forward, it should stretch
out its hand, touch the ground, then fold its arm (here, it moves forward by
“crawling”), and then it needs to detach from the ground. By repeating this, it
can keep moving forward.
Reinforcement-learning algorithms learn such actions if rewards are

designed appropriately. For a crawling robot, we would need a sensor to
sense how much the robot moved forward. Then, the output from the sensor
can be used as a reward. The reward (the fact that the robot moved forward)
is only acquired when the previously described actions are performed in the
correct order. If executed in the wrong order, no reward or even a negative
reward would be given (e.g., if it folded its arm, touched the ground, and then
stretched out). Many reinforcement-learning algorithms start from a random
search, trying various actions from various states (here, we could use the
current pose of its arm as the state), and memorize the rewards obtained for a
given state. By repeating trials, the algorithm hopefully converges to find the
best policy.
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Various reinforcement-learning algorithms are available. Among them, the
most famous isQ-learning, which is designed to remember the best reward for
each “Q-state,” defined as the combination of action and state. One expansion
of Q-learning with deep-learning techniques is referred to as deep Q-learning
(DQN), which uses a deep neural network to represent the Q-state.
Reinforcement learning typically takes time to repeat thousands of trials

until it converges, even for relatively simple problems like the aforemen-
tioned crawling robot. Moreover, during the trial-and-error process, a robot
unfortunately needs to fail a lot in order to “unlearn” all the specific ways in
which it can be wrong. Sometimes, researchers try to use physics simulations
to moderate these learning costs. For example, it took several months with
seven robot arms learning in parallel for the arm to learn how to grasp various
objects, whereas a model using a simulation and previously collected data
took only a few days to learn the same behavior Ibarz et al. (2021). Applying
reinforcement learning to HRI problems is not straightforward–because of the
cost of failures, the time involved, and the difficulty in using simulation—yet
researchers have started to try to findmethods to make it feasible for HRI (e.g.,
Mitsunaga et al. 2008, McQuillin et al. 2022).

3.8.4 Adaptation
Both the user and the robot are adaptive systems. Humans have sophisticated
skills to adapt their behavior and communication to their environment and
others. When talking to a child, for example, adults tend to use simpler words
and sentence structures, a phenomenon often referred to as motherese (Wrede
et al., 2005; Rohlfing et al., 2005). Similarly, users also tend to adapt their
communication when talking to a robot. They tend to speak slower and louder,
particularly if the speech-recognition system does not seem to work properly
(Kriz et al., 2010).
In return, robots are commonly expected to adapt their behavior to their

users (Rossi et al., 2017) to optimize the interaction. Allan et al. (2022), for
example, showed that users benefit from different types of praise from a robot
based on their implicit self-theory. Users who consider self-attributes, such as
intelligence, as malleable (incremental theory) prefer praise for their effort,
whereas users who consider it to be unchangeable (entity theory) prefer to
receive praise for their ability.
The robot needs to collect considerable data about each user to be able to

infer characteristics such as these. Applying reinforcement learning would be
one of the possible implementations for doing so. However, these data can
only be collected in real-time, and hence data collection is limited. Therefore,
it is still quite challenging research.
In both of these adaptations, the human and the robot change their own

behavior. Humans have the additional option of explicitly changing the robot
to their preferences. They may, for example, switch to a male voice or
prefer a certain color of plastic over another. This adaptation is referred
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to as customization. It does not require any sophisticated machine-learning
techniques other than the adjustment of certain parameters.

3.9 Limitations of robotics for HRI

There are several limitations of robotics, some of which are specific to HRI
and some of which apply to robotics in general. One general challenge is that a
robot is a complex system that needs to translate between the analogue world
and the digital internal computation of the robot. The real world is analogue,
noisy, and often very changeable, and the robot first needs a suitable digital
representation of the world, which the software then uses to make decisions.
Once a decision is made, this is translated back into analogue actuation, such
as speaking a sentence or moving a leg.
Another major challenge applicable to robotics at large is that of learning.

Currently, machine learning needs to iterate through millions of examples
to slowly nudge itself toward performing a task with a reasonable level of
skill. Despite speedups due to advances in DNNs and GPUs, at the time of
writing, computers need days or often weeks to learn, and this is only when
all the learning can happen internally, for example, in simulation or using
prerecorded data. Learning from real-time data that a robot samples from the
world is still virtually impossible. Related to this is the challenge of transfer, or
the performance of one skill transferring to another. For example, people can
learn to play one game of cards andwill then be able to transfer that knowledge
to quickly pick up another game of cardswith different rules.Machine learning
typically struggles with this task and needs to start the learning of a new
challenge from scratch.
The seamless integration of the various systems on a robot also represents a

major challenge. Speech recognition, natural-language understanding, social-
signal processing, action selection, navigation, and many other systems all
need to work together in order to create convincing social behavior in a
robot. On simple robots, this is manageable, but on more complex robots, the
integration and synchronization of these various skills are still beyond our
grasp. Face detection, emotion classification, and sound-source localization
might each work well in isolation, but bringing the three together to make
the robot respond in a humanlike manner to people approaching the robot is
still a challenge. Greeting people who smile at the robot, looking up when the
door slams, or ignoring people who show no interest in the robot may sound
easy, but it is difficult to build such behavior that consistently works well. The
challenge becomes formidable once further skills are added. Conversational
robots, which aim to interact with people using natural language in addition to
using their full suite of sensors to react in an appropriate manner, are only now
being attempted in research labs across the world. It is unlikely that a robot will
be built in the next decade that can handle a conversation as well as people can.
Robots and AI systems in general struggle with semantics: they often do not

truly understand what happens around them. A robot might seem to respond
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well to a person approaching it and asking for directions, but this does not
mean that the robot understands what is happening—that the person is new
to the space or where the directions it gives actually lead to. Often, the robot
has been programmed to face people when they come near and to respond to
the key words it hears. Real understanding is, at the moment, still exclusive to
humans. Although there are research projects on imbuing AI systems with
a sense of understanding (Lenat, 1995; Navigli and Ponzetto, 2012), there
are not yet robots that can use their multimodal interaction with the world
to understand the social and physical environment.

The reasons why AI has not yet achieved a humanlike general intelli-
gence level are manifold, although conceptual problems were identified
right from the outset. Searle (1980) pointed out that digital computers
alone can never truly understand reality because they only manipulate
syntactical symbols that do not contain semantics. In his Chinese room
thought experiment, a slip of paper with Chinese symbols is slid under
the door of a room (Searle, 1999). A man inside the room reads the
symbols and comes up with a response by applying a set of rules he
finds in a book full of instructions containing more Chinese characters.
He then writes the response in the form of other Chinese characters and
slides it back under the door. The audience behind the door might be
under the impression that the man in the room understands Chinese,
whereas in reality, he just looks up rules and has no understanding
of what those symbols really mean. In the same manner, a computer
also only manipulates symbols to come up with a response to input.
If the computer’s response is of humanlike quality, does that mean the
computer is intelligent?
According to Searle’s line of argument, IBM’s chess-playing com-

puter Deep Blue does not actually understand chess, and DeepMind’s
AlphaGo does not understand the game of Go. Both programs may
have beaten human masters of the game, but they did so only by
manipulating symbols that were meaningless to them. The creator of
Deep Blue, Drew McDermott, replied to this criticism: “Saying Deep
Blue doesn’t really think about chess is like saying an aeroplane doesn’t
really fly because it doesn’t flap its wings” (1997). That is, he debated
that as far as it functions as it is supposed to, a new machine or AI
does not need to replicate all the details of humans, animals, or birds.
This debate reflects different philosophical viewpoints about what it
means to think and understand and is still underway today. Similarly,
the possibility of developing general AI remains an open question.
All the same, progress has been made. In the past, a chess- or Go-
playing machine would have been regarded as intelligent. But now it is
regarded as the feat of a calculating machine—our criteria for what con-
stitutes an intelligent machine have shifted along with the capabilities of
machines.
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In any case, no sufficiently intelligent machine has yet been built that would
provide a foundation for many of the advanced application scenarios that have
been imagined for robots. Researchers often fake the intelligence of the robot
by applying the Wizard-of-Oz method (see Section 10.6.1 on page 182).
However, there are also some basic problems that we do not expect to find

a solution for in the near future. One of the most basic limitations of HRI is
the battery capacity. Most robots cannot operate for longer than an hour before
having to recharge. This is a major constraint for mobile robots, particularly
those that navigate in unstructured environments. For instance, once a robot
is on its way somewhere, it already has to plan its return. Furthermore, this
limitationmakes it difficult for humans to experience longer-term interactions.
Finally, robots like Nao cannot return to their charging station autonomously,
meaning that either the user or the experimenter has to manage its battery
charging.
Another physical limitation concerns the speed at which the robot

can move. Here, we mean not only the robot’s speed of driving around
but also the speed with which a robot is moving its arms and head.
Piumsomboon et al. (2012), for example, tried to motion-capture a Haka
dancer and mapped his movements in real-time to several Nao robots (see
Figure 3.20). The robot could only keep up with the human dancer if the
dancer moved unnaturally slowly. Once the dancer unleashed his powerful
Haka dance, the robots fell hopelessly behind. Another often-overlooked
limitation of robots is that they cannot move silently. Humans can move their
arms without making any noticeable sound. Robots, on the other hand, use
electrical motors, gears, or pneumatic actuators. Although this inability to
sneak around might be welcomed by some, it can be rather disturbing when
humans want to go to sleep.
If robots were to create their top 10 list of things they hate about the world,

then gravity would certainly be among the top entries. Simply refraining from

Figure 3.20 Nao robot
trying to imitate a Haka
dancer.
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falling over is incredibly hard; in humans, this process requires an extremely
fine-tuned close collaboration between different senses, such as vision, the
vestibular system, haptics, and the body’s sense of where one is in space
(Wolfe et al., 2006). Science has yet to artificially recreate a similar kind of
balance system. Furthermore, keeping in balance while moving around is even
harder, particularly when the floor is uneven or when the robot has no method
of getting up again.
From a human perspective, we are left wanting for the robot support that we

have been promised for so many years. Even today, emptying a dishwasher
remains an impossible task for robots. Over half a century ago, in 1966,
the British Broadcasting Corporation (BBC) created a short film about Able
Mabel, the Robot Housemaid.4 It promised that robots would soon be able
to handle many household tasks. Meredith Thring argued in this film that it
would only take 1 million pounds to produce the first prototype. Needless to
say, this vision of the future was far too optimistic.
The requirements of HRI often imply unrealistic assumptions about what

can be achieved with current technology, and novice research and the public
should be aware of the limitations of robotics and AI.

3.10 Conclusion

Robots are made from multiple software modules connected with sensors
and actuators. Software design requires HRI knowledge, and conversely, HRI
researchers need to have a basic understanding of software in order to provide
useful knowledge for future HRI developers. For a robot to be successful, the
different components need to be chosen and integrated with an eye toward the
specific HRI application and its needs. Despite limitations, however, robots
can be designed to interact successfully with humans in various types of short-
term, and sometimes longer, interactions.

Questions for you to think about:

• Chapters 2 and 3 introduced various robot types that are available on
the market. What sensors do these robots have?What actuators do they
have? What hardware components do you think are crucial?

• Imagine a scenario where you want to use a smart social robot. Which
sensors and actuators should it have?What skills should the robot have,
and is software available to deliver these skills?

• What kind of data set would be needed to train a machine-learning
algorithm for a new interaction capability of a robot, such as distin-
guishing your face from others?

4 See www.bbc.co.uk/archive/mabel-the-robot-housemaid-1966/zhnvxyc
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3.11 Exercises

The answers to these questions are available in the Appendix.

** Exercise 3.1 Sensors A list of technologies follows. Which ones are
typically used as sensors on robots? Select one or more options from the
following list:

Camera1.
Loudspeaker2.
Microphone3.
LED light4.
LiDAR5.
Servo motor6.
Ultrasound sonar7.

* Exercise 3.2 Pepper’s sensors, part 1 Have another look at Pepper (page
15).What sensor technologies does this robot have? Select one ormore options
from the following list:

Radar1.
Depth camera2.
Capacitive touch sensor3.
Global Positioning System4.
Inertial measurement unit5.
Oxygen sensor6.

*** Exercise 3.3 Pepper’s sensors, part 2 Based on your answer to the
previous question, what functions do you think these sensors serve?
** Exercise 3.4 How do sensors work? Which of the following statements
are correct? Select one or more options from the following list:

The light sensor in a camera can see only brightness.1.
A TOF infrared light sensor can measure depth up to 300 meters.2.
Inertial measurement units combine an accelerometer, microphone, and
gyroscope.

3.

Typical cameras can see up to 90 degrees.4.
An RGBD sensor is a camera that can estimate the distance to objects.5.
Omnidirectional microphones pick up sound from all around.6.

*** Exercise 3.5 How do servo motors work? Hobby servos are simple
motors found in cheap robots. Which of the following statements are true?
Select one or more options from the following list:

The position of a servo is controlled by the duty cycle of the control signal.1.
The speed of a servo is controlled by the voltage.2.
The servomotor continuously changes direction tomaintain its set position.3.
The position and speed of a servo are controlled by switching it on and off.4.
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An external position sensor is used to control the position of the servo.5.
A servo motor has two output axes.6.

* Exercise 3.6 Finger Have a look at your pointing finger. How many DOFs
does it have?
** Exercise 3.7 Degrees of freedom What is theminimumDOFs that a robot
needs to drive to every location in a room?
**Exercise 3.8 Grasping What is theminimumDOFs that a robot arm needs
to grasp an object in reach from any direction?
** Exercise 3.9 Linear actuators What type of linear actuators are often
used in social robots? Select one of the following options:

Hydraulic actuators1.
Pneumatic actuators2.
Aquatic actuators3.
Bimorph actuators4.

** Exercise 3.10 Control model What model is typically used to control a
robot? Select one of the following options:

𝐴𝑐𝑡 → 𝑡ℎ𝑖𝑛𝑘 → 𝑠𝑒𝑛𝑠𝑒1.
𝑆𝑒𝑛𝑠𝑒 → 𝑡ℎ𝑖𝑛𝑘 → 𝑎𝑐𝑡2.
𝑆𝑒𝑛𝑠𝑒 → 𝑎𝑐𝑡 → 𝑡ℎ𝑖𝑛𝑘3.

* Exercise 3.11 Middleware Which of the following are not middleware?
Select one or more options from the following list:

Windows1.
Linux2.
ROS3.

** Exercise 3.12 Middleware functions This question focuses on robot
middleware, such as ROS. Which statements are true? Select one or more
options from the following list:

Offers basic functions to access hardware, like access to storage or
input/output (IO) port

1.

Uses different hardware (e.g., sonar and LiDAR) in an interchangeable way2.
Automatically creates code to realize HRI without the need for explicit
coding

3.

Provides standardized environments for programmers to share and reuse
their modules

4.

Helps programmers visualize what is communicated between modules5.

*** Exercise 3.13 Machine learning Imagine we are going to build a
classifier using deep learning to, for example, identify whether there is a
person in a camera image or not. Which of the following statements are true?
Select one or more options from the following list:
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If we can maintain the quality of the data, more data will result in better
performance.

1.

Thanks to deep learning, we can train a classifier from scratch with only a
small amount of data.

2.

Thanks to deep learning, we do not need to handcraft features. We can
directly use raw image data.

3.

Thanks to deep learning, we do not need to provide labels. We can assign
random labels to the data to start training.

4.

We do not need to care about the topology of the neural network. Anything
like DNN, CNN, RNN, or transformer can be chosen for this simple image-
classification task, as long as it is a deep-learning method.

5.

*** Exercise 3.14 Robots that work with people Watch this video, and
then answer the question that follows.

Andrea Thomaz, “Next Frontier in Robotics: Social, Collaborative Robots,”
https://youtu.be/O1ZhWv84eWE

Thomaz demonstrates a robot meant to work together with people in
everyday environments. Looking at Thomaz’s robot, describe what kinds
of technical components and capabilities it has that allow it to interact with
people. What are the different social cues that the robot uses, and how
do its components work together to produce those cues in the course of
an interaction? The description does not have to go into great detail, but
do describe how you think different components (e.g., gaze, manipulation,
movement in space) work together in these interactions.

1.

Future reading:

• For basic AI:
Russell, Stuart, and Norvig, Peter. Artificial Intelligence: A Modern
Approach. Pearson, Essex, UK, 4th edition, 2022. ISBN 978-
1292401133. URL www.worldcat.org/oclc/1242911311

• For recent machine learning:
Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep Learn-
ing. MIT Press, Cambridge, MA, 2016. ISBN 9780262035613. URL
www.deeplearningbook.org

• For basic robotics:
Matarić, Maja J. The Robotics Primer. MIT Press, Cambridge, MA,
2007. ISBN 9780262633543. URL www.worldcat.org/oclc/604083
625

• For diverse topics in robotics:
Siciliano, Bruno, and Khatib, Oussama. Springer Handbook of
Robotics. Springer, Berlin, 2016. ISBN 9783319325507. URL
www.worldcat.org/oclc/945745190
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