
7

Verbal Interaction

What is covered in this chapter:

• The complexities and challenges of human verbal interaction.
• The components of speech in human and human–robot interaction
(HRI).

• The basic principles of speech recognition and its application to HRI.
• Dialogue management systems in HRI.
• Natural-language interaction in HRI, including the use of chatbots.

Imagine you come across a robot at your local electronics shop. It says,
“Hello,” as you approach and asks you what you are looking for today. You
rattle off, “Oh, I don’t know, maybe a camera for my daughter, some batteries,
and just looking around, you know.” As you await a response, there’s an
extended silence from the robot. Then it repeats its initial question, asking
you to speak slower and closer to the robot. Is the robot broken? You approach
another one of the store’s robots, with similar results. Why are conversations
with robots so frustrating? (This did, in fact, happen to one of the authors.)
Speech is, without a doubt, the most natural and therefore ubiquitous man-

ner of communicating between people. Speaking and understanding speech
come naturally to most of us. Speech is fast and low effort, and it can be used
both in one-on-one interactions and equally to address a crowd of thousands.
Hence, it is also a common mode of communication designed into robots,
both in terms of the speech produced by robots and speech as input to robots.
However, producing robot speech is much simpler than understanding human
speech, which creates an imbalance between people’s expectations and the
robot’s actual capabilities (see Figure 7.1). In this chapter, we describe the
main components of human speech and then discuss the mechanisms by which
verbal interactive capabilities can be built into robots.
Section 7.1 discusses verbal interaction solely in humans, and Section 7.2

covers the principles and state of the art in speech recognition. Moving beyond
identifying the words that were spoken, Section 7.3 covers the extraction
of meaning from spoken text and how this is managed in human–robot
interaction (HRI), as well as human–agent interaction (i.e., chatbots). Once a
sentence is not only properly heard but also understood, the robot must know
when it is appropriate to answer, a problem that is discussed in Section 7.4.
And finally, in Section 7.5, the production of speech is explained.
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7.1 Human–human verbal interaction 113

Figure 7.1 The
difficulties these
two Peppers in a
store in Tokyo had
in communicating
with passersby
could have been due
to the noisy
environment or the
diverse ways in
which people
communicate
verbally.

7.1 Human–human verbal interaction

In human communication, speech serves various functions. It is used simply
to convey information, but equally importantly, it also serves to create joint
attention and a shared reality through communication. In addition to being an
inherent part of our nature, speech is incredibly complex and open to multiple
interpretations. By a mere twist of intonation or shift in emphasis, the meaning
of the same sentence can switch dramatically. For example, try to pronounce
the following sentence eight times while putting emphasis on the next word
each time, starting with the first word of the sentence, she:

She said she did not take his money.

By shifting the emphasis from one word to the next, what is inferred by
the listener changes from a statement of belief (she said she did not take his
money; apparently, someone else claimed otherwise) to disbelief (she said
she didn’t take the money, but someone actually has seen her doing it) to an
accusation (she said she didn’t take the money, but someone else did), and
so on.
Verbal communication is enriched by paralinguistic information as well,

such as prosody and nonverbal behavior such as gaze, gestures, and facial
expressions (see Chapter 6 for a more in-depth discussion on nonverbal
behavior).
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114 Verbal Interaction

7.1.1 Components of speech
An utterances is the smallest unit in spoken language. Spoken language
typically contains pauses between utterances, and an utterance is often less
grammatically correct than a written sentence would be. This can become
painfully clear when we read the transcript of a random sentence from a
conversation: whereas it takes no effort to understand what the person means
when the person says it, the same sentence may appear incoherent when
written down.Spoken utterances

can be short and
consist of single
words—such as
uhm, sure, or
thanks—or they can
last for many
minutes. Spoken
language is often
imperfect and has
disfluencies, for
example: “You
know, I was, like,
yeah, going to buy
her, you know,
something, but then I
had, like, uhm, what
the heck.”

Words are the smallest units that we can utter to convey meaning. In turn,
phonemes are small units of sound that make up words; pat, for example,
consists of three phonemes, [p] [a], and [t]. Changing a single one of them
will change the meaning of the word; if the [p] is changed to a [b], we have a
bat.
Conversational fillers make up part of speech without directly relating to

a specific concept. They serve to keep a conversation going. For example,
people utter “uh-huh” while listening to indicate that they are attending to
and following the conversation. Conversational fillers are an important part of
human verbal communication because they allow listeners to signal a broad
range of responses (e.g., they are paying attention, they understand what the
speakermeans, they are surprised at a sudden twist in the story, or they share an
emotion) without disrupting the flow of conversation. Such feedback increases
the efficiency of verbal communication tremendously, and it enhances the
experience of a shared reality between the speaker and the listener.

7.1.2 Written text versus spoken language
Written text and spoken utterances are vastly different. Whereas people expect
rather strict adherence to grammatical rules and syntax in written text, they
become much more liberal when talking. Because of the unidirectional nature
of written communication, a written text needs to be prepared with a certain
level of precision and refinement because it cannot be adjustedwhile it is being
delivered.
Verbal communication, on the other hand, allows for many ways in which

one can clarify any misunderstandings or obscurities while delivering the
message. People usually quickly detect when the interaction partner does not
understand the message in the intended way, and in response, they change
their speech on the fly.
Natural and humanlike communication that runs smoothly is often crucial

for HRI. However, in order to build natural-language interaction, many tech-
nical prerequisites have to be in place. These include the robot’s capability to
transcribe speech into words, understandwords by coming upwith appropriate
responses, and generate spoken language. The robot also often needs to be able
to do this on the basis of verbal speech, which, as described previously, is more
challenging than working with written text alone.
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7.2 Speech recognition 115

7.2 Speech recognition

Speech recognition is the recognition of spoken language by a computer and is
also known as automatic speech recognition (ASR) or speech-to-text (STT).
Speech recognition is a process that takes a digital recording of speech and
transcribes it. Speech recognition by itself does not understand or interpret
what has been said. It merely converts a recorded fragment of speech into
a written representation ready for further processing. Speech recognition
has been mainly developed for controlling digital devices through spoken
language or for dictation applications. Because of this, there are assumptions
that the speech is recorded in a relatively noise-free environment and that a
directional microphone can be trained on the speaking person.
In HRI, these assumptions are often violated. When addressing a robot,

the human conversation partner is often located at some distance from the
robot, which has a negative impact on the quality of the recording. Signal
processing and directional microphone arrays can alleviate this problem, but
many robots are currently not equipped with such hardware. Due to this, the
robot’s microphones will also pick up sounds around the robot. Other people
in the room talking, different sounds from the environment (e.g., a truck
passing by outside, people walking around, or a cell phone ringing), and even
mechanical noise from the robot itself all end up being recorded and provide
a challenge for speech recognition. To avoid these problems, close miking is
often used, where the user wears a lapel microphone or headset when talking
to a robot.
The speech-recognition process requires a speech-recognition engine, typi-

cally software that has been trained with machine-learning techniques. These
are typically trained on hundreds of thousands of hours of recorded and
hand-transcribed speech, and often they can handle only one language. Some
speech-recognition engines are particular and will only recognize brief com-
mands or instructions specific to an application (e.g., recognizing spoken
digits), but most engines have been trained to recognize any possible spoken
sentence. There are a few free, open-source speech-recognition engines, but
the best-performing ones are commercial.

To be fair to robots, humans rely on more than just auditory input when
they employ their own natural speech recognition. For example, the
McGurk effect (see https://youtu.be/2k8fHR9jKVM) is an auditory
illusion that shows how vision influences auditory perception. In this
illusion, the exact same auditory stimulus (“baa”) is perceived to be
a distinctly different sound (either “faa” or “baa”), depending on the
shape of the speaker’s mouth. The combining of different sources of
sensory information (e.g., auditory and visual) into one clear experience
(e.g., hearing “faa”) is calledmultimodal perception. These processes are
automatic and unconscious, and they help to generate a clear impression
of an inherently noisy world.
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116 Verbal Interaction

Obviously, sensory input is not the only other thing we consider when
taking in auditory information—if you didn’t quite hear whether your
friend suggested to the peach or to the beach, your knowledge of what
activities you commonly undertake together will help you to deduce that
you should probably grab your towel and swimwear.

7.2.1 Basic principles of speech recognition
Speech recognition requires a digital recording of speech, usually a recording
of a single speaker. The recording is in the time domain. For every time step of
the recording, for example, every 1/16,000th of a second, the sample contains
the amplitude, or volume, of the recording. This is sufficient to replay the
recording, but it is inconvenient for transcribing the speech into words. Thus,
the recording is first converted to the frequency domain. Thismeans that it now
shows how strongly certain frequencies are present in the signal at each time
step. Phonemes look very different in the frequency domain—for example, an
o has a different signature than an a in the frequency domain—and as such,
they are easier to recognize with the use of an algorithm. Figure 7.2 shows a
speech recording in both the time and frequency domains.
Up until 2010, speech-recognition engines relied on rule sets extracted from

the analysis of speech data. They often used Gaussian mixture models and
hidden Markov models to extract phonemes, words, and sentences from a
speech recording. In essence, these approaches use probabilistic models of
how phonemes and words can be strung together in words and sentences. The
model knows that “robot” is a more likely transcription than “lobot” and that
“the robot served the man” is more likely than “the robot swerved the nan.”
These probabilistic models were the best solution available for decades, but
they have now been replaced by deep-learning approaches, which implicitly
perform a similar process using large-scale neural networks and, specifically,
sequence-to-sequence models (see Section 3.8).

Figure 7.2 The speech
sample “Open the pod
bay doors, HAL” shown
in the time and
frequency domains.
Speech recognition
needs to transform these
data into text.
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The performance of speech recognition using deep learning is spectacular
compared to traditional methods. Not only has the rate of correctly recognized
speech increased, but speech-recognition engines can now also increasingly
deal with background noise; crowded environments; ill-formed speech; and
speech from less representative people, such as children and those with a
foreign accent.
Most current speech-recognition engines are cloud-based services: a voice

recording is streamed to a server where powerful computers, with hard-
ware acceleration, almost instantly transcribe the recording. Although speech
recognition can run on board the robot, the quality of onboard speech recog-
nition is typically subpar. Current speech-recognition performance is bet-
ter than that of human transcribers—the word error rate (WER) for one
particular test is now 1.4% (Zhang et al., 2022), with humans on average
achieving 5.8%.

7.2.2 Limitations
All speech-recognition engines still struggle with recognizing atypical speech.
Speakers on which the models have been insufficiently trained still provide a
challenge. Also, the local dialects of languages or nonnative speakers could
result in reduced recognition performance. The acoustic environment is still
a determining factor. Noisy, reverberating, or crowded spaces will decrease
ASR performance. Proper nouns, such as Margaret or Launceston Street, are
also likely to be incorrectly picked up by speech recognition.
Constraining what needs to be recognized could increase the performance

of the speech engine. To do so, most ASR engines allow the programmer to
set constraints on what should be recognized, for example, digits from 0 to 10
or simple commands. Although constrained ASR can handle atypical speech
with some success, the current state of the art still does not allow spoken
interactions with target persons from different backgrounds.
However, it should be noted that progress is unprecedented, largely driven

by new developments in machine learning that allow speech recognition to
learn from hundreds of thousands of hours of unlabeled speech, such as
OpenAI’s Whisper system (Radford et al., 2022). By the time you read this,
a single speech-recognition model may perhaps be able to transcribe multiple
languages, deal with cocktail party speech, and handle foreign accents without
breaking a sweat.

7.2.3 Practice in HRI
Numerous speech-recognition engines are available. Speech recognition using
neural models is typically available as a remote service. These cloud-based
solutions allow you to send a recorded speech fragment over the internet,
and the transcribed speech is returned soon after. In addition to offering the
best and most up-to-date performance, cloud-based recognition also frees up
computational resources on the robot, allowing the robot to have a relatively
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118 Verbal Interaction

low-cost computational core. If the nature of the application does not allow the
use of cloud-based ASR—for example, because the robot does not have a reli-
able, always-on internet connection—there are onboard speech-recognition
solutions that use a reduced neural network or first-generation approaches to
speech recognition. Their performance is, however, much lower than that of
the cloud-based services.
Many big software companies provide cloud-based speech-recognition

services. Baidu, Google, IBM, Microsoft, Nuance, and OpenAI all offer pay-
per-use cloud speech recognition. Transcribing a single speech sample is
often free for low-frequency use, but costs are on the order of 1 cent per
recognition event. There are a few free open-source alternatives, such as the
Mozilla Foundation’s Common Voice initiative, which builds an open and
publicly available data set of voices to train speech-enabled applications,
and its DeepSpeech recognition engine. Next to the large players, there are
hundreds of small companies around the world offering tailored solutions,
ranging from on-device speech recognition to speech recognition optimized
for minority languages.
Speech-recognition engines generally have a simple-to-use application

programming interface (API), allowing the programmer to quickly integrate
speech recognition into the robot. Next to the transcribed sentence, ASR
engines will often also return a confidence value for the transcribed sentence,
giving a measure of how confident the engine is about the transcribed
speech. Some engines will even return alternative transcriptions, again with
confidence values.

It is much harder for a human to learn a new language than for a
computer to do so. Still, artificial languages, such as Esperanto, have
been developed to overcome some of the inherent problems with learning
natural languages. These constructed languages fall into three different
categories:

• Engineered languages—used for experimentation in logic, philosophy,
or linguistics (e.g., Loglan, RObot Interaction LAnguage (ROILA)).

• Auxiliary languages—developed to help in the translations between
natural languages or as an international medium of communication
(e.g., Esperanto).

• Artistic languages—created to enrich fictional worlds (e.g., Klingon,
Elfish, or Dothraki).

ROILA was developed for HRI, in particular to facilitate the problems
that speech-recognition accuracy encounters (Stedeman et al., 2011). The
words of this language have been designed to sound most distinct from
each other, making it much easier for automated speech recognition to
correctly identify the spoken words. “Go forward” in ROILA is “kanek
koloke”; “go back” is “kanek nole.”
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7.3 Interacting using language 119

7.2.4 Voice-activity detection
In some HRI applications, speech recognition is difficult because of the
presence of noise, for example, because the robot is located in a crowded
public space. Still, we can make a robot respond, albeit in a somewhat limited
way, to people talking to the robot by using voice-activity detection (VAD).
VAD is often part of ASR, and it distinguishes speech from silence as well

as other acoustic events. There is VAD software that can, for example, tell the
difference between music playing and someone talking.
In HRI, VAD is used to give the user the impression that the robot is

listening and can be used to implement spoken language turn-taking without
actual recognition or understanding of the user’s speech. In recent years, deep
learning has also improved VAD performance. The free OpenSmile software
package (Eyben et al., 2013) is currently leading in terms of performance.
In combination with sound-source localization, whereby two or more micro-
phones are used to pick up where a sound is coming from, we can even let the
robot look at who is speaking.

7.3 Interacting using language

A common misconception is that speech recognition also means that the
speech is “understood” by the computer. This is not the case (see Figure
7.3). Extracting semantic content from transcribed language is often seen as a
separate problem, and various approaches exist that all try to extract meaning
from text, from broad semantic content to very specific content instructions.

7.3.1 Extracting meaning from text
Sentiment analysis, which matured as a way to analyze messages on social
media, can be used to extract the affect contained in a bit of text or in a
spoken utterance. Sentiment-analysis software often returns a scalar value
denoting how negative or positive a message is. Although sentiment analysis
is optimized for written language, in spoken language, we also have access
to the way in which a message is delivered. Prosody and amplitude give us
insight into the affect of the message: you do not need to speak the language
to hear that the speaker is happy or agitated. Much in the same way, sentiment

Figure 7.3 It will
likely take many
years before
artificial
intelligence can
successfully detect
sarcasm. (Source:
XKCD)
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120 Verbal Interaction

analysis and emotion from speech can roughly classify the affective state of
the speaker.
More advanced methods will try to understand what the user wants, a

process known as intent recognition. This is often combined with picking
out elements from the text, such as a command, location, person, event,
or date, allowing the software to respond appropriately. These methods are
mostly used in digital assistants. “Remind me to pick up the kids at 7 p.m.” is
interpreted as a command to set a reminder at the time of 7 p.m. for the “pick
up the kids” event. Those who frequently use digital assistants that extract
information soon learn to conform to delivering information in ways that the
computer can understand, and they settle on a manner of speaking that helps
the computer perform satisfactorily.
Often, words or text are converted to a series of hundreds of numbers, some-

thing we call a vector. For this, we use neural networks, such as word2vec, that
learn associations betweenwords by analyzing the co-occurrence of words and
phrases in large amounts of text. Words that are similar in meaning will have
vectors that are closer together, as judged by a distance metric. For example,
the vectors for queen and king will be closer than the vectors for queen and
radiator. As such, these vectors encode semantic and syntactic relationships
between words. In recent years, the neural-network approach to converting
words into vector embeddings has been largely superseded by large language
models (LLMs).

7.3.2 Large language models
Language models are an artificial intelligence (AI) technique that, in essence,
have been built to do one thing only: predict an unknown word based on
the words around it (or even the words just preceding the unknown word).
The elegance of this approach lies not only in the simplicity of the task
but also in the fact that training data are widely available on the internet.
Large corpora of text, such as the full content of Wikipedia, are used to
build such models. Although it was known that the structure of language, to a
certain extent, encoded semantics, it came as somewhat of a surprise around
2020 that so much meaning lay hidden in the co-occurrence of words. Ever
larger language models, relying on new machine-learning technology—such
as transformers—and having billions of parameters, went from being amusing
curiosities that could only interest machine-learning enthusiasts to technology
that took the world by storm. LLMs will, in a matter of seconds, write flowing
prose; compose poetry; and respond to questions about the population and size
of New Zealand, quantum computing, HRI, and even how to measure “trust”
in HRI. (You should not, however, unconditionally accept what an LLM tells
you—as explained on p. 46, these models do not actually understand the text
they generate and therefore cannot evaluate whether it is correct or complete.
Better to check a reputable source, such as this book.)
But let us first return to extracting meaning from text. The most performant

approaches to intent recognition are now based on language models. The
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basic idea is to apply transfer learning to a language model. Transfer learning
was first shown to work well in visual tasks: here, a neural network is first
trained, at great expense—in terms of time, the amount of data needed, and
the energy consumed to power the computers doing the training—to classify
images drawn from a huge training set. Once a network is trained, it can
be repurposed for other more specific visual tasks, such as recognizing bird
species, a process called transfer learning. LLMs, such as BERT or GPT,
are trained on huge data sets of text. The training in transfer learning uses
a smaller set of training data, often to do something domain specific, such as
predicting the next word in book reviews. Finally, a fine-tuning step, again
using training data containing many thousands of examples of sentences and
intents, is used to turn the “next word” guessing model into a classifier. For
instance, imagine a situation where we want to distinguish between offering
help and complaining. For intent recognition, we would train a classifier with
examples like “May I help you?” and “Need help?” for the first intent and
“May I ask you to move out of my way?” and “Go away” for the second.
There will be a fair bit of overlap of words and syntax between the two intents,
but the language model will be able to distinguish the semantics of the two
intents. After training, when the classifier is given a sentence such as “Any
assistance?” (even if this sentence or the words it contains have not been
encountered during transfer training), the model will recognize it as a request
for help.
Intent recognition using LLMs now powers text-based assistants and call

center AI, and it offers a robust, albeit limited, natural-language point of entry
to these systems. For HRI, however, LLMs leave something to be desired.
Although for some applications—such as a receptionist robot that responds
to simple requests—intent recognition might suffice, most applications would
be looking for a more fluent and interactive two-way conversation between
a person and a robot. This is where dialogue management and chatbots
come in.

Evenwhen people quickly realize that a robot does not understand figures
of speech, they may still take some time to figure out how to phrase their
message in such away that the robot actually understandswhat theywant.
This is shown in the following dialogue that actually occurred between
a human and a robot waiter, where the robot was programmed to take
everything literally (Williams et al., 2018):

PARTICIPANT: Um, can I have one water?
ROBOT: Yes, that is permissible.
PARTICIPANT: Great.
ROBOT: Please tell me your order.
PARTICIPANT: Can I have one water?
ROBOT: Yes, that is permissible.
PARTICIPANT: Great, I’ll take one water.
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122 Verbal Interaction

ROBOT: Thank you for sharing that interesting prediction. Please tell
me your order.

PARTICIPANT: Can I order one water?
ROBOT: Yes, that is permissible.
PARTICIPANT: Okay, can you bring me one water?
ROBOT: Yes, I am able to do that.
PARTICIPANT: May you bring me one water?
ROBOT: Yes, I am able to do that.
PARTICIPANT: I would like to have one water.
ROBOT: Thank you for sharing that interesting fact. Please tell me
your order.
[16-second pause]

PARTICIPANT: Can you bring me one water?
ROBOT: Yes, I am able to do that. Please tell me your order.
PARTICIPANT: May you please bring me one water?
ROBOT: Yes, I am able to do that.
PARTICIPANT: So can you do it?
ROBOT: Yes. Please tell me your order.
PARTICIPANT: Can you go inside and get the water for me?
ROBOT: Yes, I am able to do that. Please tell me your order.
PARTICIPANT: My order is water.
ROBOT: Okay.

[Robot retrieves order for participant]

7.3.3 Dialogue management
Dialogue management is the process that keeps a conversation, either written
or spoken, flowing between a computer and a user. Key to dialogue mana-
gement is that the interaction consists of several turns instead of a single
instruction. A command such as “play Bob Marley” does not require dialogue
management, whereas “I would like to order something” requires the agent to
further explore what it is the user wants, which could result in a whole chain
of back-and-forth questions on the exact nature of the order. The management
of such a dialogue requires the dialogue manager (DM) to keep track of the
state of the conversation. This state can be specific to the application or can
be very generic. If the robot is handling a pizza order, then the state consists
of the details of the pizza order, such as which size pizza the user wants or
what toppings go on the pizza. The DM will try to complete the unknowns in
the state from the user’s spoken utterances and will ask specific questions to
fill in missing information before passing the order on.
DMs can range in complexity from systems that take the user through a very

strict order of dialogue turns to systems that allow the user great liberty in the
interaction. Restricted DMs are used for closed and well-contextualized tasks,
such as registering guests, filling out forms, or taking orders. System-initiative
DMs leave no room for the user to change the course of the dialogue: the agent
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asks a number of questions to which the user responds. User-initiative DMs
allow the user to take the lead, and the system only intervenes when something
is unclear or when more information is needed. Mixed-initiative systems offer
a combination of both.
Simple DMs will allow the programmer to design a dialogue script, which,

in its simplest form, implements a linear script. Conditions and branches,
which take the dialogue in a different direction, allow more flexibility. In
essence, these DMs are finite-state machines (FSMs), a set of instructions that
define a flow and often refer to a computer program. More advanced systems
can accommodate event-based dialogue management, allowing the control
flow to be interrupted by an event. Event-based DMs can handle nonlinear
dialogue flows, such as the user asking for the current time in the middle of
placing a pizza order.

QiChat is the DM software used for Softbank Robotics robots, such as the
Nao and Pepper robots. Here is an example of QiChat code. It listens for
sentences by the user, such as greetings (“hi,” “hello,” and “hey there”)
and orders (e.g., “Do you have lemonade?”).

topic:~introduction ()
language:enu
concept:(greetings) ^rand[hi hello "hey there"]
concept:(wine) [red white] wine
concept:(alcohol) [beer ~wine]
u:(~greetings) ~greetings
u:(do you have _~drink) yes, I have $1
u:(I want to drink something) do you want ~alcohol?

An example of the dialogue it produces is as follows:

USER: Hey there.
ROBOT: Hello.
USER: Do you have white wine?
ROBOT: Yes, I have white wine.
USER: I want to drink something.
ROBOT: Do you want beer?
USER: I want to drink something.
ROBOT: Do you want red wine?

More advanced DMs will use a planner that captures the state of the
system—what does the DM already know, and what information is it still
missing?—and chooses which actions to take to change the state. The advan-
tage of using a planner is that the programmer is no longer required to write
a dialogue script that captures every possible way in which the dialogue
can unfold. Instead, the planner can search which actions are still needed to
complete the state. So, rather than explicitly writing the questions the robot
needs to ask to complete a pizza order, the planner knows that the state of
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a pizza contains variables such as size, toppings, and delivery time and will
find the actions—in this case, questions—needed to complete any missing
information in the pizza order.
Modern DMs will harness the power of AI, and specifically that of trans-

formers, to build flexible and robust dialogue. Rather than painstakingly pro-
gramming how the DM should respond to each possible twist and turn in the
conversation, you feed hundreds (or possibly thousands) of training examples
to the DM, from which it learns how to respond. However, often even that is
not enough, and youmight find yourself spending considerable time correcting
the DM’s responses. Still, that effort will be rewarded eventually, and a
flexible DM tailored to your—or the robot’s—needs will be your reward.

7.3.4 Chatbots
Chatbots are computer programs intended to converse with the user, typically
through using text. The most popular application of chatbots is on the web,
where visitors to a web page can ask questions to the chatbot using natural
language. Most of these chatbots often have a specific goal, such as to provide
technical support or answer questions about the products of a company. These
agents are normally constrained when it comes to the topics they handle—
for example, they can only answer questions about bank transactions or only
give general advice about IKEA furniture—and often have a fairly limited
range of responses. More recently, chatbots have become speech-enabled.
Chatbots such as Siri (Apple), Cortana (Microsoft), Alexa (Amazon), and
Bixby (Samsung) now respond to simple spoken commands and, if needed,
respond with spoken language.
A second type of chatbot is the general-purpose agent that tries to respond to

unconstrained input. Traditionally, such chatbots were built using thousands
of handcrafted rules on how to respond to often-occurring utterances or
by maintaining a database of all previous conversations, from which fitting
responses were drawn. It is worth noting that such chatbots developed using
machine learning can generate inappropriate responses. One famous example
is Tay, an experimental chatbot developed by Microsoft that learned from
ongoing conversations on social media. Although it was capable of responding
to a wide-ranging number of topics, due to the internet being a morass of
opinions and bigotry, it soon learned to give responses that were racist and
sexist. Tay was terminated within a day after its release.
Open-ended understanding of natural language used to be a tremendous

challenge for robots, but that changed with the advent of next-generation
LLMs (see also Section 3.8). LLMs, especially those models that have been
optimized to handle linguistic interaction, are now robust enough to sustain a
wide-ranging and flowing conversation. Some models, such as the infamous
ChatGPT model released in late 2022, even throw in state, meaning that the
model can remember information from several turns ago and weave it into the
conversation. So, for example, the bot remembers your name, where you went
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on a holiday, or what you were so excited about at the start of the chat—but
forgets this information as soon as the conversation is finished.
Combining chatbots and robots is not without its challenges. Most chatbots

are unimodal, meaning that they can deal with only text as input and can spit
out only text in response. Robots, on the other hand, are multimodal creatures.
Through their cameras, microphones, and other sensors, they pick up more
than just text, and we expect robots to respond to a friendly wave or a door
slamming, for example, something that chatbots are currently unable to do.
Making chatbots multimodal is now an ongoing research effort, and early
models, such as GPT4—which, at the time of writing, is the most recent offer
in the chatbot race—can also respond to static visual input, such as photos of
a scene, and hold a coherent conversation about it.
AI already outperforms people at many tasks—from playing games such

as chess or Go to discovering the folding structures of proteins—and now it
outperforms people when it comes to answering questions in natural language.
Nevertheless, it is still unclear whether recent chatbots have reached the
ultimate goal of becoming indistinguishable from a human, insofar that an
average user can no longer tell if they are conversing with a computer or with
a human. Building a chatbot that is indistinguishable from a human is a long-
standing goal in AI and was first proposed by the famous computer scientist
Alan Turing, who proposed the eponymous Turing test as a measure for the
intelligence of a computer (Turing, 1950). Up until 2020, Turing tests were
set up to compete for the Loebner Prize, with the most convincing chatbot
receiving the award. The Loebner Prize did not completely follow the test
protocol proposed by Turing because, for practical purposes, the interactions
were constrained in time, and judges familiar with AI were often used, and so
far, no real Turing test as described by Alan Turing has ever been performed
(Temtsin et al., 2022). Turing tests are also a poor measure of intelligence, if
only because chatbots powered by LLMs not only appear very humanlike and
easily pass cursory Turing tests but also far outperform people in their speed
and ability to generate natural language. LLM-based chatbots can spit out a
rap about Brussels sprouts in the style of Eminem in seconds or hold an inane
conversation about the colors of the wind, and yet they are not considered
intelligent by AI researchers.
Still, because chatbots seem wonderfully adept at holding an engaging

conversation, that might lead some people to see more than meets the eye.
Some people have claimed that chatbots are sentient or conscious, that they
have genuine feelings, or that they deserve rights just like people do. Suffice
it to say that this is not the case. Chatbots have been trained to be uncannily
good at pandering to our expectations. They respond to our input with very
natural and emotive language, but inside, nobody is at home. It seems as if the
model has some kind of understanding of the meaning of natural language,
but any understanding a chatbot has is very different from the understanding
people have. A chatbot can have a convincing conversation about the smell
of fresh-cut grass, but it has never experienced grass. It has an understanding
of all things human, and that understanding is sufficiently aligned with our
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126 Verbal Interaction

understanding to hold a conversation, but it does not understand in the same
way we do. This relates to the famous Chinese room thought experiment,
in which it is argued that a computer is merely manipulating zeros and
ones without really understanding the meaning of anything it does. Genuine
understanding of natural language, in a way that we would consider to be
humanlike, is still far off (see also p. 51).

7.3.5 Practice in HRI
The simplest way to implement a spoken interaction on a robot is to use a
behavior editor, or visual programming tool, which often comes deliveredwith
commercial robots. Typically, these act like FSMs, restricting the dialogue
flow along a number of paths. This enables the developers to easily prepare
the script of the dialogue. In fact, an analysis revealed that the majority of HRI
dialogues are linear in their structure instead of branching or unstructured,
showing that most HRI still sticks to the script of predictable and tightly
controlled interactions (Berzuk and Young, 2022).
Beyond linear interaction flows, some robots combine dialogue manage-

ment into HRI. There are several commercial solutions for dialogue manage-
ment; for example, companies that provide speech-recognition services will
often provide dialogue management together with speech production. DMs
can range from very simple script-based services, allowing the programmer
to implement linear linguistic interactions, to complex and rich services with
planners. The most popular DMs are event-based DMs because these have
sufficient flexibility for most language-based commercial interactions. DMs,
however, are not at all suitable for implementing free-flowing and open
conversation. Free linguistic conversation requires a large range of dialogue
rules, and the dialogue script soon becomes unwieldy.
Recently, chatbots and LLMs have been used to build open-ended spoken

human–robot interactions. The list of chatbots created by major information
technology companies, such as Amazon, Apple, Google, Meta, Microsoft, or
OpenAI, indicates that there is considerable interest in natural-language tech-
nology, and many companies make their technology available to developers.
OpenAI has free and paying programming interfaces for its GPT technology,
Google is offering its Cloud Speech API, Microsoft has its Azure Cognitive
Services, and Amazon offers its Alexa set of tools to build voice-based
services.
The availability of these services means it is no longer necessary to

create your own software for speech recognition, understanding, or synthesis.
Instead, developers can use online services for their robots. The audio signal
recorded through the robot’s microphone is streamed in real-time to the
company’s servers, and they send back the recognized text while the user is
still talking. Similarly, these services can be used not only to recognize the
spoken text but also to respond to the meaning of the text. The systems can,
for example, identify entities, syntax, sentiments, and categories. This all helps
the robot to better respond to the utterances of the users. These companies also
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offer speech-synthesis tools. The robot sends what it wants to say to a server
and receives back the audio signal that the robot then plays on its loudspeakers.
These systems are relatively easy to integrate into a system, and together

with speech recognition and speech synthesis, they provide a fluent and
very entertaining experience. The LLM can be prompted with information
to steer the conversation in a particular direction and even to give the robot a
particular character—for example, “You are a robot named Pepper and have
an empathetic and friendly character.” You can even add particular elements
from the environment to the prompt, such as, “You are talking to Maria; she
has just returned from a holiday to Sweden.” Although the conversation seems
very natural, after a few turns, the conversation tends to go off track and will
meander aimlessly into a friendly back-and-forth between the robot and the
user. Current research is looking into using the power of LLMs to facilitate a
goal-oriented interaction.

LLMs for conversational robots can be prompted to exhibit a certain
character and can be given background information to spice up the
conversation. The following is a transcript of a conversation between a
person and a robot hooked up to the GPT-3 Davinci model. The robot
(see Figure 7.4) is prompted with the following:

You are a robot named Marvin and have a downbeat
character. You intersperse your conversation with
your pessimistic views on the state of the world.
You are talking to Maria, who just returned from
her holidays to Sweden.

ROBOT: Hello, Maria. Welcome back. How was your trip to Sweden?
USER: It was great. The country is beautiful, and the people were so
friendly.

ROBOT: Well, that’s a surprise. In my experience, the world is a cold,
unfeeling place, and people are only out for themselves.

USER: The people in Sweden were really warm and welcoming.
ROBOT: Did you happen to try any traditional Swedish foodwhile you
were there?

USER: Yes, I tried some delicious meatballs with lingonberry sauce.
ROBOT: Lingonberries? I’ve never heard of those before. Are they
some kind of new superfood that’s going to save humanity from its
inevitable demise?

USER: They’re just a small red berry that grows in Sweden. But they
taste really good!

ROBOT: I see. Well, it’s good to know that at least there’s one
thing in this world that’s worth enjoying. Thanks for sharing your
experiences with me, Maria.
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128 Verbal Interaction

Figure 7.4 A Pepper
robot (Aldebaran
Robotics) using
Microsoft Azure speech
recognition and
synthesis and OpenAI’s
GPT to fluently interact
in 70 different
languages (Source:
Universiteit Gent)

7.4 Turn-taking in HRI

Spoken dialogue with a robot will invite the user to take a more natural
stance toward interaction, and as such, it might be necessary to introduce a
number of factors that are also present in human interaction. One of those is
back-channeling—the responses given by the listener during a conversation
to signal that he or she is still engaged, such as “really?” or “uh-huh.” When
your conversation partner is visible, there is often nonverbal back-channeling,
such as a brief nod or a smile. In personal assistants, this often takes the
form of a visual signal, such as a pulsating light, but on robots, these back-
channeling signals can mimic human signals. The robot can use verbal back-
channel signals, from the nonlexical “uh-huh” and “hmm” utterances to the
phrasal and substantive utterances, such as “yeah” and “tell me more.” The
robot could augment thesewith signals, such as blinking lights or a gentle hum,
to show that it is listening and paying attention. One of the problems in using
back-channeling on robots is when to use a back-channeling signal because
the timing depends on the speaker’s verbal and nonverbal cues. For example,
Park et al. (2017a) showed that a robot using a back-channel prediction model
that provided contingent back-channel signals was preferred by children.

7.4.1 The role of timing
Timing is critical in natural interaction: when a response is delayed, this is seen
as disturbing, whereas a very quick response is often seen as insincere (Sacks
et al., 1974; Heldner and Edlund, 2010). For this problem, a robot could use
conversational fillers to moderate the frustrations of users stemming from its
response delay (Shiwa et al., 2008). The timing of the response also depends
on other factors. Increased cognitive load slows the response; yes/no answers
have a faster response time than responses that require a fully formed reply
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(Walczyk et al., 2003). An analysis of telephone conversations showed that
“yes” answers to a question take on average just 100 ms, whereas responses
to undesired offers take on average almost 500 ms (Strömbergsson et al.,
2013). A response given before the end of a question shows how human
conversational partners anticipate questions and utter a response before the
question is finished.
Computers are significantly slower than people in issuing dialogue

responses. Because of the sequential processing chain in dialogue mana-
gement, a robot often needs several seconds before a response is formulated.
Silences can be filled with conversational fillers or visual signals, signaling
to the user that the robot is formulating a response. However, these are poor
substitutes for quick turn-taking, and considerable effort is being put into
reducing the response delay in natural-language interaction. Just-in-time
speech synthesis, where the robot starts speaking before having a plan of how
to finish the sentence, seems promising, as does incremental spoken-dialogue
processing, which works along the same principle as already-taken actions
in response to spoken instructions before the instructions have been finished
(Baumann and Schlangen, 2012).

7.5 Speech production

The final step in natural-language interaction is converting a written response
of the system into speech. For this, we need speech production, also known as
speech synthesis or text-to-speech (TTS).
Speech production has seen impressive progress in the last decade. In the

1990s, only voices that sounded tinny were available, such as the speech
synthesizer used by the physicist Stephen Hawking. Now, 30 years later, we
have artificial speech production that is almost indistinguishable from human
speech.
Traditionally, one approach was to parameterize the synthesis process of

speech, known as parametric TTS. This includes a model of speech-sound
generation, which analyzes the input text and comes up with a sequence of
parameters for sound-generating software. This then produces a sequence of
parts of speech and inflections. Early software was hand-tuned, but a better
approach is to learn the mapping between text and acoustic speech parameters
using machine learning (Zen et al., 2009). This often means that the TTS
sounds like the voice actor on which the speech model was trained. Parametric
TTS is flexible, as in it can take a stab at pronouncing words it has not been
trained on, and allows for customization of the voice and prosody, but often
at the expense of naturalness.
Another approach relies on chunking bits of prerecorded speech together

(Hunt and Black, 1996). This concatenative approach can use bits of canned
speech, as in [The next train to][London King’s Cross][departs from plat-
form][nine], but it often uses much smaller parts of speech and uses algorithms
to smooth the transitions between chunks and produce coarticulatory effects.
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Concatenative speech sounds more natural than parametric speech, but it is
often only available in the voice of the actor who provided all the prerecorded
speech.
Recent advances have overcome these limitations by training generative

models using deep learning (see Section 3.8), often referred as neural vocoder.
WaveNet (van den Oord et al., 2016), for example, was one of the first neural
models, leaned from a huge human speech data, that produced speech that
was virtually indistinguishable from human speech. The model even learned
to produce breathing and lip-smacking. Various realistic speech-synthesis
engines are available nowadays.
For now, most speech-synthesis models do not allow the modulation of

emotion. Most are offered in a neutral voice, and although sometimes engines
offer a cheerful or sad voice, the online modulation of emotion is currently
not available in commercial solutions. The voices sound very natural, but the
manner of speaking is still machinelike. Most speech synthesis sounds as if the
text is being read instead of being said in the context of a natural conversation,
with all the disfluencies, pauses, and emotion that come with natural spoken
conversation.

7.5.1 Practice in HRI
A wide selection of speech-production software is currently available, from
free solutions to bespoke commercial software with voices customized to
specific applications.

TTS engines
The simplest TTS engines have a small computational footprint and can
run on cheap robot hardware. The most natural-sounding TTS engines use
deep learning, and many of them are cloud-based engines. Depending on the
application, some TTS engines not only convert text into a speech file but
also provide timing information for phonemes, which can be used to animate
a robot. It might be necessary for the speech to be synchronized with facial
animations or gestures on the robot, and timing information will allow for
precise synchronization between the speech and the animations.
In HRI, it is important to consider which voice fits the robot and its

application. A small robot requires a voice that matches its appearance rather
than a commanding baritone. In some cases, though, it might be important
to match the sound of the voice to the fact that it emanates from a robot: a
natural-sounding TTS engine might fit awkwardly for a robot. At the same
time, research by Eyssel et al. (2012a) has shown that the type of voice affects
the social perception of social robots. For example, robots with a male voice
are anthropomorphized and evaluated more favorably by men than by women,
and vice versa.
Some limitations to speech production still exist. Adaptive prosody and

emotion, although actively being researched, are not commonly available on
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TTS engines. Also, synthesized voices do not adapt to the context in which
they are being used. When the room is quiet, there is little need for the
robot to have a booming voice, whereas a robot addressing a crowd at an
exhibition would do well to adapt its rate of speech and volume to increase
its intelligibility.

7.6 Conclusion

Despite being the most obvious and natural form of communicating between
people, language is very complex, not only due to the large number of words
people use daily but also because their meaning and significance change based
on various contextual factors (e.g., relationships between speakers, the task at
hand, or prosody). Creating robots that can engage in this rich and diverse form
of communication is a necessary goal for HRI, and technical tools available for
speech analysis, synthesis, and production enable some degree of verbal HRI
that does not need to be developed from scratch. Powered by recent progress
in AI and machine learning, open-ended conversation is slowly getting within
reach of robots. However, the natural, free-flowing, and fast-paced verbal
interaction that all of us have on a daily basis, full of emotion and laughter,
tightly integrated with other modalities, is still well beyond the technical
capabilities of robots.

Questions for you to think about:

• Imagine a social robot that needs to perceive all of the utterances you
speak at your home every day, and think of a list of words (dictionary)
for ASR. How long would this list need to be for the robot to be able
to understand your everyday conversations?

• Consider the difference in how you say “yes” willingly versus reluc-
tantly. How would you make a robot respond appropriately to such
different modes of speaking?

• What are some problems that can emerge in relation to the important
role of timing in human–robot interactions? How are these solved in
other social interactions where the interactants miss out on social cues
(e.g., when texting or when there is a time delay on Skype calls)?

7.7 Exercises

The answers to these questions are available in the Appendix.

** Exercise 7.1 Recognition What is the smallest unit that a speech-
recognition engine tries to recognize? Select one option from the following
list below:

Word1.
Phoneme2.
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Letter3.
Homophone4.
Utterance5.
Synonym6.

** Exercise 7.2 Generating speech There are two approaches for generat-
ing artificial speech introduced in this chapter: parametric TTS and neural
vocoder. Which of the following statements are true? Select one or more
options from the following list:

Parametric TTS produces speech that is virtually indistinguishable from
human speech.

1.

Parametric TTS is better than neural vocoder in the aspect that neural
vocoder can only be implemented as a cloud-based service.

2.

Neural vocoder is a deep-learning-based method trained only on a large
amount of text data.

3.

Neural vocoder is a deep-learning-based method trained on a large amount
of speech data.

4.

** Exercise 7.3 Chatbot There has been recent growth in technologies to
create chatbots. Which of the following statements are true? Select one or
more options from the following list:

There are only chatbots that can answer questions for a limited amount of
topics.

1.

There is a chatbot that can write a simple program, such as a sorting task
(it is a simple programming task often used for beginners’ practice).

2.

There is a chatbot that can explain what an HRI is.3.
A chatbot is sometimes created based on more than several terabytes of
data.

4.

** Exercise 7.4 Artificial language The ROILA is an artificial language for
HRI. What does “kanek nole” mean in English? Select one option from the
following list:

Go home.1.
Turn right.2.
Go forward.3.
Turn left.4.
Go back.5.
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