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1

Introduction

1.1 About this book

Since the 1950s, an everyday life with robots has always been about 10–20
years away. This is probably true at the moment in which you are reading this
book. In the early 2020s, as we are writing, there’s a lot of talk about robots
in the news, on the movie screen, and of course, in science-fiction literature.
We now even see robots in our daily lives, on city streets and in classrooms,
cafés and restaurants, and hotels. Have you ever interacted with a robot? A
vacuum-cleaning robot? A robotic toy, pet, or companion? Chances are that if
you haven’t, you will soon. Technology companies are eyeing the potential
of personal robots, with start-ups as well as large multinationals readying
themselves to create the kind of robot that everyonewants to own. But youmay
still not get a chance to be served breakfast in bed by your trusty robotic butler
anytime soon. One of the reasons for this is that designing robots to participate
in dynamically unfolding interactions with diverse users over long periods of
time has turned out to be more difficult than anyone initially thought. Robust
human–robot interaction—HRI—is difficult to design and implement.
So where is the field of robotics headed? What will, and should, our future

with robots look like? How will robots find a place in our lives? These are still
very open questions. A range of unknown but exciting futures awaits, in all
of which robots support us, collaborate with us, transport us, or entertain us.
If you’ve opened this book, you must be interested in seeing how this future
might unfold. Perhaps you even want to get involved in shaping our future
interactions with robots.
To get you started on this path, first of all, it is all about you: What kind

of educational background do you have? Did you become interested in robots
through your interest in engineering, psychology, art, or design? Or did you
pick up this book because it rekindled a childhood fascination with robots?
HRI is an endeavor that brings together ideas from a wide range of disciplines.
Engineering, computer science, robotics, psychology, linguistics, sociology,
and design all have something to contribute to how we interact with robots.
HRI lies at the confluence of these disciplines. As a computer scientist, it pays
to know about social psychology; as a designer, there’s value in dipping your
toes in sociology.
If you have an engineering background, do you think you can build a

robot that interacts with people, working only with other engineers? We,

1
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2 Introduction

unfortunately, think that you will not be able to do so. To design robots that
people want to interact with, you need a good understanding of human social
interaction. To reach such understanding, you need insight from people trained
in the social sciences and humanities.
Are you a designer? Do you think you can design a socially interactive robot

without working with engineers and psychologists? People’s expectations
about robots and their roles in everyday life are not just high, but they also vary
a lot from person to person. Some people may tell you they want robots that
will cook for them; others wish for a robot to do their homework, then have
an intellectual conversation about the latest Star Wars movie. The prowess
of robots as assistants, however, is still rather limited. Moravec’s paradox,
decades after being first expressed, still holds: anything that seems hard to
people is relatively easy for machines, and anything a young child can do is
almost impossible for a machine. As a designer, you would therefore need a
good understanding of technological capabilities and of human psychology
and sociology to create a design that is viable and realistic.
And last but not least, those of you who have training in psychology and

sociology, do you want to just wait around for such robots to appear in our
society? Wouldn’t it be too late to start studying these technologies after they
appear in our environment? Don’t you want to have an impact on what they
look like and how they interact? One thing you can do is start talking to
friendly engineers and computer scientists, or have lunch with a designer.
They will give your social science ideas some grounding in what is technically
possible and help you find the areas in which your knowledge can have the
most impact.
Just like the six of us writing this book, you will all need to work together.

To do so in an effective way, you will need to understand the perspectives of
HRI practitioners from different disciplines and be aware of the different kinds
of expertise needed for developing successful HRI projects. In this book, we
want to provide you with a broad overview of HRI topics central to the field
and get you started on thinking about how you can contribute to them. We
would like you to join us in expanding the boundaries of what is known and
possible. Technology has progressed to a degree to which it is possible to build
and program your own robot at little cost. Robots will be part of our future, so
seize your chance to shape it. Go read (this book!), create, test, and learn!
We assembled a team of leading experts from the wide spectrum of

disciplines that contribute to HRI. All of our hearts beat for improving how
humans and robots interact and for ensuring that robots are used in ways that
benefit our societies and the lives of individuals who use and are affected by
them.

1.2 Christoph Bartneck

Christoph Bartneck is an associate professor in the Department of Computer
Science and Software Engineering at the University of Canterbury. He has
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1.4 Friederike Eyssel 3

Figure 1.1 The
authors of this book
got together in
Westport, New
Zealand, in January
2018 to start the
manuscript during a
weeklong “Book
Sprint.” Writing and
editing continued
throughout the
following year and a
half through remote
collaboration—
many long Skype
calls and emails.

a background in industrial design and human–computer interaction, and his
projects and studies have been published in leading journals, newspapers, and
conferences. His interests lie in the fields of human–computer interaction,
science and technology studies, and visual design. More specifically, he
focuses on the effect of anthropomorphism on HRI. As a secondary research
interest, he works on projects in the area of sports technology and the critical
review of scientific processes and policies. In the field of design, Christoph
investigates the history of product design, tessellations, and photography.

1.3 Tony Belpaeme

Tony Belpaeme is a professor at Ghent University, Belgium, and prior to that
was a professor of robotics and cognitive systems at Plymouth University,
United Kingdom. He received his PhD in artificial intelligence from the Vrije
Universiteit Brussel (VUB). Starting from the premise that intelligence is
rooted in social interaction, Tony and his research team try to further the
artificial intelligence of social robots. This approach leads to a spectrum of
results, from theoretical insights to practical applications. He is involved in
large-scale projects studying how robots can be used to support children in
education, and he studies how brief interactions with robots can become long-
term interactions and how robots can be used in therapy.

1.4 Friederike Eyssel

Friederike Eyssel is a professor of applied social psychology and gender
research at the Center for Cognitive Interaction Technology at Bielefeld
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4 Introduction

University, Germany. Friederike is interested in various research topics rang-
ing from social robotics, social agents, and ambient intelligence to atti-
tude change, prejudice reduction, and the sexual objectification of women.
Crossing disciplines, Friederike has published vastly in the fields of social
psychology, HAI, and social robotics.

1.5 Takayuki Kanda

Takayuki Kanda is a professor in informatics at Kyoto University, Japan. He
is also the visiting group leader at Advanced Telecommunications Research
(ATR) Interaction Science Laboratories, Kyoto, Japan. He received his bach-
elor’s degree in engineering, his master’s degree in engineering, and his PhD
in computer science from Kyoto University, Kyoto, Japan, in 1998, 2000, and
2003, respectively. He is one of the starting members of the Communication
Robots project at the ATR in Kyoto. He has developed a communication
robot, Robovie, and applied it in daily situations, such as peer tutoring at
an elementary school and as a museum exhibit guide. His research interests
include HAI, interactive humanoid robots, and field trials.

1.6 Merel Keijsers

Merel Keijsers is an assistant professor in psychology at John Cabot Uni-
versity in Rome, Italy. Her training is in social psychology and statistics,
and she completed her PhD on the topic of robot bullying at the University
of Canterbury, New Zealand. For her PhD, she studied what conscious and
subconscious psychological processes drive people to abuse and bully robots;
recently, she has gained an interest in how robots influence the way humans
view themselves. More generally, having a background in social psychology,
she is mainly interested in the similarities and differences in how people deal
with robots versus other humans.

1.7 Selma Šabanović

Selma Šabanović is a professor of informatics and cognitive science at Indiana
University, Bloomington, where she founded and directs the R-House Human-
Robot Interaction Lab. Her research combines studies of the design, use, and
consequences of socially interactive and assistive robots in different social and
cultural contexts, including healthcare institutions, user homes, and various
countries. She also engages in the critical study of the societal meaning and
potential effects of developing and implementing robots in everyday contexts.
She received her PhD in science and technology studies from Rensselaer
Polytechnic Institute in 2007, with a dissertation on the cross-cultural study of
social robotics in Japan and the United States. She served as the editor in chief
of the journal ACM Transactions on Human-Robot Interaction from 2017 to
2023.

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



1.8 Notes on second edition 5

1.8 Notes on second edition

The field of HRI, like many fields relating to emerging technology, changes
and develops as new technological capabilities become available for the
design and implementation of robots and the study of people who interact with
them. To ensure that this text maintains its relevance, we updated it in 2023
to cover new technical capabilities as well as new theoretical and method-
ological developments in the field. We also wanted to add more discussion
of conversations about inclusion, societal relevance and impact, and ethical
considerations regarding HRI to the original text. Finally, we recognized that
our first edition focused largely on social robotics as the main domain of HRI,
obscuring human–robot interactions in domains like factories, where people
and robots collaborate to work on different tasks; disaster assistance, where
people interact with mobile and flying robots to put out fires or save human
lives; and even in autonomous driving, where interactions between people and
robots may not be focusing on social engagement. In this edition of the book,
we reframe our understanding of the social nature of HRI to include HRI and
collaboration whose social nature is more broadly construed—in some sense,
all robots operating alongside and with humans can be understood as social,
and all human–robot interactions can be the purview of HRI research. In late
2022/early 2023, weworked both in person and remotely to update the text and
teaching activities provided in the book.We hope you enjoy the newmaterials!
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2

What Is Human–Robot Interaction?

What is covered in this chapter:

• The academic disciplines that come together in the field of human–
robot interaction (HRI).

• The barriers created by the disciplines’ different paradigms and how
to work around these.

• The history and evolution of HRI as a science.
• Landmark robots in HRI history.

Human–robot interaction, or HRI, is commonly referred to as a new and
emerging field, but the notion of human interaction with robots has been
around for as long as the notion of robots themselves. Isaac Asimov, who
coined the term robotics in the 1940s, wrote his stories around questions that
take the relationship between humans and robots as the main unit of analysis:
“Howmuchwill people trust robots?”; “What kind of relationship can a person
have with a robot?”; “How do our ideas of what is human change when we
have machines doing humanlike things in our midst?” (see page 237 for more
on Asimov). Decades ago, these ideas were science fiction, but nowadays,
many of these issues are real and present in contemporary societies and have
become core research questions in the field of HRI.
This chapter aims to set the table for the rest of the book. Because HRI

is an incredibly diverse field, Section 2.1 highlights and explains the main
themes included in this book. Section 2.2 covers the interdisciplinary nature
of this field, and the consequences for research and robot design are explored.
Finally, Section 2.3 provides a timeline of the development of (social) robots
and gives an overview of the robots most commonly used in HRI.

Distinguishing physical and social interaction: Robotics at large has
traditionally been concerned with the creation of physical robots and
the ways in which these robots manipulate the physical world. HRI
adds to this and is concerned with the ways in which robots interact
with people as part of their social world and how people respond to the
presence of robots. For example, when a robot picks up a box in an empty
warehouse or cleans an office building after hours, it is sensing and acting
in the physical world alone and dealing with the physics of its own body

6
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What Is Human–Robot Interaction? 7

and its environment. But when the robot takes the box to a warehouse
worker who needs to fill it with appropriate materials, delivers coffee to a
customer in a café, or chases children around in a courtyard, it is not only
dealing with the physical motions needed for those actions, but it must
also address the social aspects of the environment. For example, it needs
to consider where the children, customers, or the office workers are; how
to approach them in a way that is safe and that they consider appropriate;
and how to follow the appropriate social rules of the interaction. Such
social rules might be obvious to humans, such as acknowledging the
presence of others, knowing who is “it” in a game of tag, and saying
“you’re welcome” when someone says “thank you.” But for a robot, all
these social rules and norms are unknown and require the attention of the
robot designer. These concerns make HRI questions different from those
pursued in robotics alone.

As a discipline, HRI is related to human–computer interaction (HCI),
robotics, artificial intelligence, the philosophy of technology, psychology, and
design. Scholars trained in these disciplines have worked together to develop
HRI, bringing in methods and frameworks from their home disciplines and
also developing new concepts, research questions, and HRI-specific ways of
studying and building the robots that interact with people.
What makes HRI unique? Clearly, the interaction of humans with social

robots is at the core of this research field. These interactions usually include
physically embodied robots, and their embodiment makes them inherently
different from other computing technologies. Moreover, social robots are
often perceived as social actors bearing cultural meaning and having a strong
impact on contemporary and future societies. Saying that a robot is embodied
does not mean that it is simply a computer on legs or wheels. Instead, we have
to understand how to design that embodiment, in terms of both software and
hardware, as is commonplace in robotics, and in terms of its effects on people
and the kinds of interactions they can have with such a robot.
A robot’s embodiment sets physical constraints on the ways in which it can

sense and act in the world, but it also represents an affordance for interaction
with people. The robot’s physical makeup elicits people to respond in a way
similar to that in which they interact with other people. When a robot has
eyes, people make the assumption that the robot can see them. When the
robot has a mouth, people assume that the robot can talk. The robots’ human-
likeness enables humans to use their existing experience of human–human
interaction to understand and participate in human–robot interaction. These
experiences can be very useful in framing an interaction, but they can also
lead to frustration if the robot cannot live up to the users’ expectations (as
discussed in more detail in Chapter 8).
HRI focuses on developing robots that can interact with people in various

everyday environments. This opens up technical challenges resulting from
the dynamics and complexities of humans and the social environment. This
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Figure 2.1 Honda
developed the Asimo
robot from 2000
through 2018. (Source:
Honda)

also opens up design challenges—related to robotic appearance, behavior, and
sensing capabilities—to inspire and guide interaction. From a psychological
perspective, HRI offers the unique opportunity to study human affect, cog-
nition, and behavior when individuals are confronted with social agents other
than humans. Social robots, in this context, can serve as research tools to study
psychological mechanisms and theories.
From the very first mention of the term robot in Karel Čapek’s play

Rossum’s Universal Robots, our vision of the ideal robot has focused on
mimicking humanlike capabilities, often represented by a humanoid form,
either in a full body, as in Honda’s ASIMO (see Figure 2.1), or in parts, such as
by robot arms or their more anthropomorphic representation in Sawyer robots.
When we look at the current state of the art in HRI, however, we see that
robot embodiments are much more diverse—spherical robots can roll around
and interact with children (e.g., Sphero, Roball); robots can fly in the air (e.g.,
drones) or go underwater (e.g., OceanOneK); robots canmimic animals so that
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2.2 HRI as an interdisciplinary endeavor 9

they can encourage petlike interactionswith people (e.g., Paro) or even interact
with their biological counterparts in nature (e.g., squirrel robot); and robots
can look like objects (e.g., suitcases, trash cans, boxes) or common devices,
such as buses and cars, and take many other forms. One of the exciting things
about HRI is that it can expand our visions of what robots and our interactions
with them could be like beyond the familiar anthropomorphic notions.
When robots are not just tools but also teammates, collaborators, com-

panions, guides, tutors, and other types of social interaction partners, their
study and design as part of HRI bring up many different questions about
interpersonal relationships and societal development, both in the present and
in the future. HRI research includes issues related to the social and physical
design of technologies, as well as societal and organizational implementation
and cultural sense-making, in ways that are distinct from related disciplines.

2.1 The focus of this book

HRI is a large, multidisciplinary field, and this book provides an introduction
to the problems, processes, and solutions involved. This book enables the
reader to gain an overview of the field without becoming overwhelmed with
the complexities of all the challenges that we are facing, although we do
provide references to relevant literature, which interested readers might want
to investigate at their leisure. This book provides a much-needed introduction
to the field so that students, academics, practitioners, and policymakers can
become familiar with the future of how humans will interact with technology.
This book is an introduction, and as such, it does not require extensive

knowledge in any of the related fields. It only requires the reader’s curiosity
about how people and robots can and should interact with each other.
After introducing the field of HRI and how a robot works in principle,

we focus on the robots’ designs. Next, we address the different interaction
modalities through which humans can interact with robots, such as through
speech or gestures. We also consider how we can understand and study how
people perceive robots. The processing and communication of emotions is
the next challenge we introduce before reflecting on the role that robots
play in the media. The research methods chapter introduces the unique
issues that researchers face when conducting empirical studies of humans
interacting with robots. Next, we cover the application areas of social robots
and their specific challenges before discussing broader societal and ethical
issues around the use of social robots. The book closes with a look into the
future of HRI.

2.2 HRI as an interdisciplinary endeavor

HRI is multidisciplinary and problem-based field by nature and by necessity.
HRI brings together scholars and practitioners from various domains:
engineers, psychologists, designers, anthropologists, sociologists, and
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10 What Is Human–Robot Interaction?

philosophers, along with scholars from other application and research
domains. Creating a successful human–robot interaction requires collab-
oration from a variety of fields to develop the robotics hardware and
software, analyze the behavior of humans when interacting with robots
in different social contexts, and create the aesthetics of the embodiment
and behavior of the robot, as well as the required domain knowledge for
particular applications. This collaboration can be difficult due to the different
disciplinary jargon and practices. The common interest in HRI among this
wide variety of participants, however, is a strong motivation for familiarizing
oneself with and respecting the diverse ways of acquiring knowledge.
HRI is, in this multidisciplinary sense, similar to the field of human–
computer interaction (HCI), although dealing with embodied interactions
with intelligent agents in diverse social contexts differentiates HRI from HCI.
The various disciplines that contribute to HRI differ from each other

in terms of their shared beliefs, values, models, and exemplars (Bartneck
and Rauterberg, 2007). These aspects form a “paradigm” that guides their
community of theorists and practitioners (Kuhn, 1970). Researchers within
a paradigm share beliefs, values, and exemplars. One way of understanding
the difficulties of working together on a shared project can be based on three
barriers (see Figure 2.2) that can occur between designers [D], engineers [E],
and scientists (particularly social scientists) [S]:

1. Knowledge representation (explicit [S, E] versus implicit [D]);
2. View on reality (understanding [S] versus transforming reality [D, E]); and
3. Main focus on (technology [E] versus human [D, S]).

Barrier 1: Engineers [E] and scientists [S] make their results explicit by pub-
lishing in journals, books, and conference proceedings or by acquiring patents.
Their body of knowledge is externalized and described to other engineers

Figure 2.2 HRI taps
into several disciplines,
and barriers are often
experienced between
these.
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2.2 HRI as an interdisciplinary endeavor 11

or scientists. These two communities revise their published results through
discussion and control tests among peers. On the other hand, designers’ [D]
results are mainly represented by their concrete designs. The design knowl-
edge necessary to create these designs lies within the individual designer,
mainly as implicit knowledge, often referred to as intuition and described to
the community in general principles.
Barrier 2: Engineers [E] and designers [D] transform the world into pre-

ferred states (Simon, 1996; Vincenti, 1990). They first identify a preferred
state, such as the connection between two sides of a river, and then implement
the transformation, which in our example would be a bridge. Scientists [S]
mainly attempt to understand the world through the pursuit of knowledge
covering general truths or the operation of general laws; although suggestions
for intervention and transformation can be extrapolated from scientific work,
they are often outside the purview of the scientific work itself.
Barrier 3: Scientists [S] and designers [D] are predominantly interested in

humans in their role as possible users. Designers are interested in human
values, which they transform into requirements and, eventually, solutions.
Scientists in the HCI community are typically associated with the social or
cognitive sciences. They are interested in the users’ abilities and behaviors,
such as perception, cognition, and action, as well as the way these factors
are affected by the different contexts in which they occur. Engineers [E]
are mainly interested in technology, which includes software for interactive
systems. They investigate the structure and operational principles of these
technical systems to solve certain problems.

Figure 2.3 The
Mirokai robot by
Enchanted Tools,
France. It combines
omnidirectional
navigation with two
robot arms and a
back-projected face.
(Source: Enchanted
Robots)

Being aware of these disciplinary differences before embarking on an HRI
project can help establish fruitful collaboration that takes into account the
different types of knowledge and practice of the different disciplines. It is
clear that an HRI project can bring in expertise from all of these different
disciplinary types, but not every HRI project can afford to have dedicated
specialists from all these disciplines. Many projects will also need to include
people from additional disciplines, such as ethicists or education researchers,
and application domains, such as health practitioners or educators. HRI
researchers often need to wear several hats, trying to gain expertise in a variety
of topics and domains. Although this approach may reduce the problems of
finding common ground, it is quite limiting. We often do not know what
we do not know. It is therefore important to either engage with all or many
of the involved disciplines directly or at least communicate with experts in
the respective fields. As the field of HRI grows and matures, it has also
been expanding to include more and more different disciplines, frameworks,
and methods (e.g., historians, performers), which can require an even more
expansive set of knowledge requirements. In this case, we suggest also getting
used to reading broadly, not just in your own discipline or subdomain of
HRI but also in related fields, to understand how your own work fits into the
bigger picture. When developing specific HRI applications, it is also crucial to
collaborate with domain experts, including potential users and stakeholders,
in the design—from the beginning of the project—tomake sure to ask relevant
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questions, use appropriate methods, and be aware of the potential broader
consequences of the research to the application domain.

2.3 The evolution of social robots and HRI

The concept of “robot” has a long and rich history in the cultural imagi-
nation of many different societies, going back thousands of years to tales
of humanlike machines, the later development of automata that reproduce
certain human capabilities, and more recent science-fiction narratives about
robots in society. Although these cultural notions of robots may not always
be technically realistic, they color people’s expectations of and reactions to
robots.

The first mention of “social robot” in print was in 1935, when it was used
as a derogatory term for a person having a cold and distant personality.

Toadying and bootlicking his autocratic superiors, he is advanced
to preferment. He is a business success. But he has sacrificed all
that was individual. He has become a social robot, a business cog.
(Sargent, 2013, p. 92)

In 1978, the first mention of “social robot” was made in the context of
robotics. An article in Interface Age magazine described how a service
robot, in addition to skills such as obstacle avoidance, balancing, and
walking, would also need social skills to operate in a domestic setting.
The article calls this robot a “social robot.”

Ever since the concept of “robot” emerged, first in fiction and later as real
machines, we have pondered the relationship between robots and people and
how they could interact with each other. Every new technological or concep-
tual development in robotics has forced us to reconsider our relationship with
and perception of robots.
When the first industrial robot, the Unimate, was installed at General

Motors’ Inland Fisher Guide Plant in Ewing Township, New Jersey, in 1961,
people did consider how theywould interact with the robot, but theyweremore
concerned about the place robots would take among human workers. People
who saw behavior-based robots for the first time could not help but marvel
at the lifelike nature of the robots. Simple reactive behaviors (Braitenberg,
1986) implemented on small mobile robots produced machines that seemed
injected with the very essence of life. Scurrying and fidgeting around the
research labs of the 1990s, these robots evoked humanlike character traits and
fundamentally changed our idea of how intelligence, or at least the appearance
of intelligence, could be created (Brooks, 1991; Steels, 1993). This led to the
creation of robots that used fast, reactive behavior to create a sense of social
presence.
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2.3 The evolution of social robots and HRI 13

Figure 2.4 Kismet
(1997–2004), an
early example of
social human–robot
interaction research
from the
Massachusetts
Institute of
Technology.
(Source: Daderot)

An early example of a social robot is Kismet (see Figure 2.4). Developed at
the Massachusetts Institute of Technology in 1997, Kismet was a robot head-
and-neck combination mounted on a tabletop box. Kismet could animate its
eyes, eyebrows, lips, and neck, allowing it to pan, tilt, and crane its head. Based
on visual and auditory input, it reacted to objects and people appearing in its
visual field. It extracted information on visual motion, visual looming, sound
amplitude, and emotion from speech prosody, and it responded by animating
its facial expressions, ears, and neck and by babbling in a nonhuman language
(Breazeal, 2003). Kismet was surprisingly effective in displaying a social
presence, even though the control software only contained a small selection of
social drives. It did so not onlywith its hardware and software architectures but
also by taking advantage of human psychology, includingwhat is known as the
“baby schema,” a predisposition to treat things with big eyes and exaggerated
features in social ways despite their lack of fully functional social skills (Jia
et al., 2015).
Like many robots in the early days of social robotics and HRI, Kismet was

a bespoke robot, available to researchers in only one laboratory and requiring
constant effort by students, postdocs, and other researchers to keep up and
build up the robot’s capabilities. These limitations understandably constrained
the number of people and the range of disciplines that could participate in HRI
in the field’s early days. More recently, HRI research has been bolstered by
the availability of reasonably priced commercial platforms that can be readily
purchased by laboratories. These have expanded both the replicability and
comparability of HRI research across labs, as well as the range of people who
can engage in the discipline.
A number of commercially available robots have had a significant influence

on the field. We will discuss some of the most commonly used ones here,
but this list is by no means intended to be exhaustive because new robots
get released, established robots get discontinued, and existing robots not
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Figure 2.5 Nao
(2006–present), a
58-cm-tall humanoid
robot, one of the most
popular research
platforms in social
robotics.

previously used in HRI get adopted and adapted for social robotics research.
The robots discussed here, however, have all made their mark on the field and
will be reemerging throughout this book.
Perhaps the most influential robot in the field of social robotics is the Nao

robot (see Figure 2.5). Nao was originally developed by the French company
Aldebaran Robotics, which was acquired by Softbank Robotics in 2015 and,
in the process, became Softbank Robotics Europe until it was sold in 2022
to the German United Robotics Group, which renamed it back to Aldebaran
Robotics. Nao was first sold in 2006, and due to its affordability (a Nao
costs under 10,000 USD), robustness, and ease of programming, it became
a widespread robot platform for studying HRI. Because of its size, it is also
highly portable, allowing for studies to be run outside the lab. Another small
humanoid robot that became available on the market later on is QT, by LuxAI,
designed for use in research and educational contexts.
Aldebaran Robotics also created Pepper, an adolescent-size humanoid with

a tablet built into its chest (see Figure 2.6). Some stores use Pepper to attract
visitors and market products and services. The production of Pepper robots
was reportedly discontinued in 2020, although at the time of writing, the robot
was still available for purchase.
Taking it down a few notches in terms of size and complexity, the Keepon

robot (see Figure 2.7), developed by Hideki Kozima, is a minimal robot
consisting of two soft yellow spheres to which a nose and two eyes are added.
The robot can swivel, bend, and bop, using motors worked into the base
of the robot (Kozima et al., 2009). Keepon was later commercialized as an
affordable toy (priced at 40 USD), and through some moderate hacking, it can
be used as a research tool for HRI. Studies with the Keepon robot convincingly
demonstrated that a social robot does not need to appear humanlike; the simple
form of the robot is sufficient to achieve interaction outcomeswhere onemight
assume the need for more complex and humanlike robots.
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Figure 2.6
Pepper robot
(2014–present) and
its sensors (Source:
Pepper Robot by
SoftBank Robotics
and Philippe
Dureuiltoma)

Another simple design robot, the Paro companion and therapy robot (see
Figure 2.8), shaped like a baby seal, has been particularly popular in the study
of socially assistive robots in eldercare, as well as other scenarios. Paro has
been commercially available (price: around 7,500 USD) in Japan since 2006
and in the United States and Europe since 2009 and is a robust platform that
requires almost no technical competence to operate. Paro has therefore been
used by various psychologists, anthropologists, and health researchers, both
to study the potential psychological and physiological effects on people and
to explore ways in which robots might be adopted in healthcare organizations.
The simplicity of the robot’s operation and its robustness enable its use in
many different contexts, including in long-term and naturalistic studies. At
the same time, the fact that it is a closed platform—which does not allow
robot logs or sensor data to be extracted from the robot or allow the robot’s
behaviors to be changed—poses some limitations for HRI research.

Figure 2.7 Keepon
(2003–present), a
minimal social robot
developed by
Hideki Kozima. The
robot was later
commercialized as
an affordable toy.
(Source: Hideki
Kozima, Tohoku
University)

The Baxter robot, sold by Rethink Robotics until 2018, is both an industrial
robot and a platform for HRI (see Figure 2.9). The robot’s two arms are
actively compliant: in contrast to the stiff robot arms of typical industrial
robots, Baxter’s arms move in response to an externally applied force. In
combination with other safety features, the Baxter robot is safe to work
near, which makes it suitable for collaborative tasks. In addition, Baxter
has a display screen mounted at head height on which the control software
can display facial animations. Baxter’s face can be used to communicate its
internal state, and its eye fixations communicate a sense of attention to the
human coworker.
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Figure 2.8 Paro
(2003–present), a social
robot made to resemble
a baby harp seal. Paro is
provided as a social
companion robot.
(Source: Courtesy of
AIST, www.aist.go.jp)

Figure 2.9 Baxter
(2011–2018) and
Sawyer (2015–2018),
industrial robots with
compliant arms by
Rethink Robotics.
Baxter was the first
industrial robot to
include social
interaction features on
an industrial
manipulator. (Source:
Rethink Robotics, Inc.)

In 2017, Anki launched the Cozmo robot (see Figure 9.4), which was
followed up in 2018 by Vector. In 2020 Anki was taken over by Digital
DreamLabs, which released a second version of both robots in 2021. Although
both robots are comparable in design, Cozmo has been designed primarily as
an educational or research tool, with its behavior being customizable via an
app or directly through coding (using Python). Vector, on the other hand, is
more autonomous, responds to voice commands, and comes with predesigned
behaviors. Cozmo and Vector cost around 500 USD and have both been used
in HRI research.
Robots that were not explicitly designed to be used for HRI can also be

used or even modified for HRI studies. The most commercially successful
home robot is still the iRobot Roomba vacuum-cleaning robot (price rang-
ing from 500 to 3,000 USD, depending on how intense of a cleaning the
user wants), millions of which have been sold around the world. Roombas
not only are an interesting agent for use in studying the public’s relation-
ship with robots (Forlizzi and DiSalvo, 2006) but also have been modified
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Figure 2.10 Aibo
ERS-1000 robot
(2018–present).
(Source: Copyright
of Sony
Corporation)

and hacked for HRI research. iRobot also makes educational robots, the
Root (250 USD) and the Create (300 USD), which lack the vacuuming
component and can be used in research and educational applications of
robots.

Figure 2.11 The
Astro (2022–
present) integrates
Amazon’s Alexa in
a robotic platform
and can be used as a
home-monitoring
system. (Source:
Amazon)

Another consumer robot that has been used in HRI research is Aibo, an
example of an animal-like robot, which was created by Sony and looks like
a dog with a somewhat mechanical appearance (see Figure 2.10) and has the
ability see, hear, feel touch, make sounds, wag its ears and tail, and move
around on its four legs. The first Aibo models were sold in 1999, and sales
were discontinued in 2006. Eleven years later, sales of new models started
again, priced at roughly 3,000 USD.
Finally, Amazon released the Astro household robot in 2022 (see

Figure 2.11). This home monitoring robot integrates the artificial intelligence
assistant Alexa with a knee-high tablet mounted on a three-wheeler. It
can be used for home security (as a remote-controlled camera on wheels);
deliveringmessages and small items around the house; and all tasks commonly
associated with tablets, including video calls, streaming of shows and movies,
and looking up information online.
Although the availability of affordable commercial robots with open appli-

cation interfaces caused a proliferation of HRI studies, a second development
has allowed for in-house-built social robots. New developments in mecha-
tronic prototyping mean that robots can be modified, hacked, or built from
scratch. Three-dimensional (3D) printing, laser cutting, and the availability
of low-cost single-board computers have made it possible for researchers
to build and modify robots in a short time and at minimal cost—both full-
scale humanoids, such as InMoov (see Figure 2.12), and small robots, such as
Blossom (Suguitan and Hoffman, 2019) or Ono (Vandevelde et al., 2016) (see
Figure 2.13).
As you can see, the variety of robot hardware opens up endless research

questions that can be addressed from a multidisciplinary perspective. Section
3.2 goes into more detail on the different types of robots. For an overview
of the many robots available, you can explore the databases that were put
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Figure 2.12 InMoov
(2012– present) can be
built using
rapid-prototyping
technology and readily
available components.
The InMoov robot is an
open-source social
robot.

Figure 2.13 Blossom
(2019– present) is an
open-hardware,
open-source tensile
robot that you can
handcraft and
accessorize. Here, they
wear a crocheted cover.
(Source: Courtesy of the
Cornell Human-Robot
Collaboration and
Companionship Lab.
Photo: Dorin Haver)

together by Anthropomorphic roBOT (ABOT)1 and the Institute of Electrical
and Electronics Engineers (IEEE).2
Unlike other disciplines, HRI places particular emphasis on investigating

the nature of social interactions between humans and robots, not only in dyads
but also in groups, institutions, and sooner or later, in our societies. As will
become clear in this book, technological advancements are a result of joint

1 See www.abotdatabase.info
2 See https://robotsguide.com/robots/
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interdisciplinary efforts that have important societal and ethical implications.
Keeping these in mind by doing human-centered research will hopefully lead
to the development of robots that are widely accepted and that serve humans
for the greater good.

Questions for you to think about:

• The HRI field draws insights from many other fields, but what other
fields could benefit from research in HRI?

• Are you a designer, engineer, or social scientist? Try to imagine a
situation in which you are collaborating with others to construct a robot
(e.g., if you are an engineer, you are now working with a designer
and a social scientist on this endeavor). How is your way of working
different from the approaches the other teammates might use?

• What is the main difference between the disciplines of HRI and HCI,
and what makes HRI unique as a new field?

2.4 Exercises

The answers to these questions are available in the Appendix. The asterisks
next to each exercise denote the difficulty level, from * (least difficult) to
***** (most difficult).

** Exercise 2.1 Disciplines What is the main difference between the
disciplines of HRI and HCI? Select one option from the following list:

HRI uses only one computer, whereas HCI uses many computers.1.
HRI focuses on embodied social agents, whereas HCI focuses on interac-
tions with computers.

2.

HCI focuses on computers, whereas HRI focuses on humans.3.
Robots don’t use computers.4.
HRI focuses on the interaction between machines, whereas HCI focuses on
the interaction between humans.

5.

* Exercise 2.2 Your background What is your educational/professional
background? (This exercise may help you become more aware of from which
angle you’ll most likely approach HRI.) Although you might have more than
one background, select your main background from the following list:

Social sciences (psychology, sociology, anthropology, etc.)1.
Engineering (computer science, mechanical engineering, electrical engi-
neering, mechatronics, etc.)

2.

Design (interaction design, product design, user experience designer)3.

*** Exercise 2.3 What makes robots social and good? Watch these two
videos, and then answer the two questions that follow.
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• Cynthia Breazeal, “Developing Social and Empathetic A.I.,” https://youtu.
be/T52g7dCxJ4A

• Henry Evans and Chad Jenkins, “Robots for Humanity,” https://youtu.be/
aCIukWXmlV4

Cynthia Breazeal says Kismet is the “first social robot.” What makes
Kismet (and the other robots discussed in this chapter) social? Would you
say robots are social in a different way from people, and if so, how?

1.

Breazeal talks about how artificial intelligence can be designed to be more
helpful to humans, and Evans and Jenkins demonstrate someways in which
robotic embodiment can extend human capabilities. What did you find
compelling about these possibilities for using robots “for the social good”?
Can you think of any social issues that you or members of your community
face in which the types of robotic capabilities that Breazeal, Evans, and
Jenkins discuss could be helpful?

2.
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3

How a Robot Works

What is covered in this chapter:

• The basic hardware and software components that a robot consists of.
• The techniques we can apply to make a robot ready for interacting with
people.

As a way of thinking about how a robot works, let us role-play by imagining
being a robot. We might think we can do a lot of things, but we soon find
out our capabilities are severely limited. If we are newly built robots, without
appropriate software, our brains are entirely empty. We cannot do anything—
move, know where we are, understand what is around us, even ask for help.
We find the experience of being a robot rather strange and difficult to imagine.
The main source of strangeness is that the new robot’s brain is nothing like a
human brain, not even an infant’s. The robot has no basic instincts, no goals,
no memory, no needs, no learning capabilities, and no ability to sense or act.
To make a robot system, we need to integrate, and at least partially develop,
hardware and software together to enable the robot to sense and act in the
world.
This chapter is written for readers who have a limited technical background

in intelligent interactive robotics. It describes the common components of
a robot and how they are connected to enable participation in interaction.
Section 3.1 explains basic ideas about the components needed to build a robot.
Section 3.2 explains the types of hardware. Section 3.3 covers the integration
of hardware and software and addresses the perception (e.g., computer vision),
planning, and action control of the robot. Section 3.4 introduces sensors,
such as cameras, range finders, and microphones, and Section 3.5 introduces
actuators. Section 3.6 discusses software specifically designed for connecting
other pieces of software to form one coherent program. Section 3.7 covers
how to model interaction between the robot’s program and the environment,
whereas Section 3.8 goes specifically into artificial intelligence (AI) and
machine learning. Finally, Section 3.9 discusses the most pressing limitations
of robotics.

21

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



22 How a Robot Works

3.1 The making of a robot

To build a robot, one of the first steps is to establish connections between
the robot’s sensors, computer, and motors so that the robot is able to sense,
interpret what it senses, plan actions, and then act them out. Once the robot is
connected, for example, to a camera, its computer can read the data the camera
provides. But the camera image is nothing more than a large table of numbers,
similar to the following table:

9 15 10
89 76 81
25 34 29

From these numbers, can you guess what the robot is seeing? Perhaps a
ball, an apple, or a fork? Assuming that each value in the table represents the
lightness value of one sensor element in the camera, we can translate those
numbers into a graphic that is more meaningful to humans (see Figure 3.1),
but the graphic remains meaningless to the robot.
You might be able to see a line in the image shown in Figure 3.1, but a

robot has no understanding of what a line is. This line might be the edge
of a cliff from which the robot could fall and damage itself. But the robot
does not have a concept of height or gravity. It would not comprehend that
it could fall if it crossed this line. It does not know that if it fell, it would
likely come to rest upside down. Without the appropriate sensors, it would
not register that it would be falling, nor that it abruptly came to a stop as
it encountered the ground. It would not even recognize that its arm would be
broken. In other words, even concepts that are vitally important for interacting
with and surviving in the world around us that are innate in humans have to
be explicitly programmed in a robot.

Figure 3.1 The
camera’s data
translated into a grid
of grayscale pixels.

A robot, in essence, is a computer with a body. Any functionality needs
to be programmed into the robot. A problem that all robots have to deal
with is that although their sensors and motors are sufficient for operating
in this world, their intelligence is not. Any concept of interest to roboticists
needs to be programmed into the robot. This requires a lot of time and effort
and often involves many cycles of trial and error. The analogue world out
there is converted into a digital world, and translating tables of numbers into
meaningful information and meaningful responses is one of the core goals of
AI. Being able to identify a face from a large table of values, recognizing if a
person has been seen before, and knowing that person’s name are all skills
that require programming or learning. Thus, the progress of human–robot
interaction (HRI) is constrained by the progress that is made in the field of
AI. Robotics engineers integrate sensors, software, and actuators to enable the
robot to make sense of and interact with its physical and social environment.
An engineer might, for example, use accelerometer sensors, which can detect
acceleration and Earth’s gravitational pull, to read the orientation of the robot
and determine if it has fallen. A cliff sensor, consisting of a small infrared
light source pointing down and a light sensor, can be used by the robot to
avoid falling down a staircase.
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3.2 Robot types 23

Typical problems that robot engineers have to solve for the robot include
the following:

• What kind of body does the robot have? Does it have wheels? Does it have
arms?

• How will the robot know its location in space?
• How does the robot control and position its body parts—for example, arms,
legs, wheels?

• What does the space around the robot look like? Are there obstacles,
cliffs, doors? What does the robot need to be able to perceive about this
environment to move safely?

• What are the robot’s goals? How does it know when it has achieved them?
• Are there people around? If so, where are they, and who are they? How will
the robot know?

• Is a person looking at the robot? Is someone talking to it? If so, what does
the robot understand from these cues?

• What is the human trying to do?What does the person want the robot to do?
How can we make sure the robot understands this?

• What should the robot do, and how should the robot react?
• Does the robot have enough battery power?

To address these questions, HRI researchers need to build or choose
appropriate hardware and an appropriate morphology for the robot and then
develop relevant programs—the software—that can tell the robot what to do
with its body.

3.2 Robot types

At the time of this writing, a number of robots have been produced for
the consumer market. Section 2.3 introduced some of the landmark robots,
although this list is far from complete. For a more complete overview, we refer
to the databases created by Anthropomorphic roBOT (ABOT) (www.abot
database.info) and the Institute of Electrical and Electronics Engineers (IEEE)
(https://robotsguide.com/robots/). Although not all consumer robots become
domestic staples, these commercial robots are often suitable platforms for HRI
research. Commercially available robots can be categorized in a number of
ways, including the following: social robots and drones, humanoids, androids,
zoomorphic robots, virtual agents, telepresence and tele-operation robots,
projection robots, and industrial robots. We will discuss these types in this
section.
As covered in Chapter 1, social robots are robots that are designed to

interact with humans (Hegel et al., 2009). This does not necessarily mean
that a robot has a humanlike shape; as will be explained in Section 4.2 and
Chapter 8, humanswill readily perceive humanlike traits in other agents if they
give off certain social cues or behave in certain ways. Thus, even a robot as
simple as the Keepon (see Figure 2.7) can be considered a social robot because
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24 How a Robot Works

its behavior creates the impression of a social presence. Obviously, different
social robots will have different levels of complexity in their interaction. Paro,
the baby seal robot (see Figure 2.8), can move its tail and open and close its
eyes based on haptic feedback, but it does not communicate in other ways.
In contrast, the iCub is shaped like a child (see Figure 3.8) and can display a
variety of facial expressions, both of which create a myriad of ways to engage
in social interaction.
Drones, and in particular, social drones, are flying robots that co-share space

with humans (Obaid et al., 2020; Baytas et al., 2019; Johal et al., 2022) and
can be used for applications in the household or education, among other use
cases. Contrary to humanoid robot types, which will be discussed next, social
drones commonly do not have a humanlike appearance.
Humanoid robots are robots that follow a general humanlike outline for

their hardware. This means that generally speaking, the robot will be bipedal
(although sometimes the legs are merged into a shaft on wheels, as is the case
with Wakamaru and Pepper; see Figures 2.6 and 6.4); have a torso with a
set of arms; and have a head with at least some facial features, such as eyes
and a mouth. Well-known examples of humanoid robots include Nao, Pepper,
Asimo, Robovie, and iCub.
Further humanlike in appearance are the android robots, which aim to

mimic human looks as closely as possible. Although creating an exact replica
of a human face and body out of silicon may be doable, animating it in
such a way that it moves in a natural and humanlike way comes with its
own set of challenges and issues, as discussed in greater detail in Section
4.2.1. Well-known androids include Kokoro and the Geminoid HI 4 robots
(see Figure 4.5; see also Figure 4.7). Rather than trying to follow a human
outline, zoomorphic robots are modeled after an animal shape. This can
be an existing animal: for example, the Aibo is modeled after a dog (see
Figures 2.10 and 11.1), the Paro after a baby seal (see Figure 2.8), and the
Pleo after a baby sauropod dinosaur (see Figure 11.5). However, the robot’s
designer can also take some artistic freedom in their design and come up
with their own fantasy animal, as was done in the creation of the Furby (see
Figure 3.2).

Figure 3.2 The
Furby (1998–2016)
is a commercial
zoomorphic robot
that was particularly
popular in the late
1990s.

An interesting in-between form of virtual assistants and embodied robots
is the projection robots. These robots consist of a physical husk on which
features are projected (see Figure 3.3). The benefits of this layout are that
it becomes possible to mimic subtle movements, such as facial expressions,
and that the appearance of the robot (e.g., skin color, gender) can be easily
changed. At the same time, the animations of this robot remain projected rather
than actual movements, and to our knowledge, there is no robot available yet
that combines a projection with animated embodiment that would allow the
robot to manipulate its environment.
Strictly speaking, virtual agents aren’t robots: they are animated represen-

tations of an agent that is presented on a screen (e.g., a computer, tablet, or
smartphone). Often, these agents are linked up with AI programs that can
process spoken or written language commands and provide a response. These
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3.3 System architecture 25

Figure 3.3 The
Furhat robot
combines a virtual
face with a
hardware
embodiment
through projection.
(Source: Furhat
Robotics)

applications have found their way into many areas, such as customer service,
healthcare, sales, and education (Lugrin et al., 2022).
Telepresence robots can also be used as platforms for HRI research. Many

different types exist on the market, including mobile versions, such as the
Beam, and desktop versions like Kubi. Small mobile robots carrying a screen
displaying a friendly face are being developed, soon to be ready for release in
the consumer market.
Although commercially available robot hardware provides a wide variety

of morphologies and sensing and programming capabilities, every robot
is limited in what it can do; its appearance and capabilities constrain the
interactions it can engage in. Researchers, therefore, also conceive and build
their own robots, which range from simple desktop and mobile platforms with
or without a manipulator to very humanlike android robots. The choice of a
particular morphology for a robot to be used in HRI research often depends
on the capabilities needed for the expected task (e.g., whether it needs to be
able to pick up objects), the type of interaction (e.g., petlike interactions can
benefit from an animal-like robot), and people’s expectations and perceptions
of different morphologies (e.g., humanoids may be expected to behave and be
intelligent in ways similar to humans).

3.3 System architecture

All the hardware components of the robot need to be connected to a computer
so that they can become interactive. The architecture of such a system can
typically be divided into layers. Each layer typically only communicates with
its direct neighbors (see Figure 3.4).

3.3.1 Hardware layers
At the bottom of the system are the different hardware components, such as
motors and sensors. They are connected with cables to one or more comput-
ers. Some robots do all processing on board, but many robots will offload
processing to other computers. In more recent robot software, the speech
recognition, computer vision, and storage of user data often happen in the
cloud, transmitted by internet-connected software services, typically operating
on a pay-per-use basis. The advantage of cloud-based computing is that the
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Figure 3.4 System
architecture for robots.
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robot has access to much more computing power and storage space than it
could ever carry on board. Smart speakers, such as Google Home and Amazon
Alexa, rely on cloud-based computing. However, a disadvantage is that when
a robot relies on cloud-based computing, it needs robust communication with
the cloud server. This is not necessarily guaranteed, particularly when a robot
is mobile. Thus, time-critical computing and computing used to guarantee
safety (e.g., emergency stops) are usually done on board.

3.3.2 Software layers
Above the hardware layers are the software layers. All the currently available
robots are controlled by software running on one or several computers. The
computers receive data from sensors and periodically send commands to the
actuators.
On the computer, there is an operating system (e.g., Windows, Linux),

which acts as the general platform allowing the software to access the
general hardware of the computer, such as access to disks and files, and
manages resources like memory and the central processing unit (CPU). The
drivers enable the operating system to communicate with specific hardware
components. These drivers normally come from the manufacturer of the
hardware components, but some of them might already come integrated
into the operating system. For example, when you plug a mouse into your
computer, you normally do not need to install any drivers.
Although application software can directly run on the operating system,

robotic applications often are run through middleware, consisting of many
small pieces of software modules. Middleware is considered a “software
glue,” being in the middle of software modules and the operating system (see
Section 3.6 for a more in-depth discussion).
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3.4 Sensors

Most social robots are equipped with sensors that allow them to gauge what
is happening in their environment. Many commonly used sensors are related
to the three most commonly used modalities in human interaction—vision,
hearing, and touch—but robots are not at all limited to human modes of
sensing. It is often helpful, therefore, to consider what types of information
the robot needs to perceive and what the most accurate and expedient ways
are for it to do so, rather than focusing on reproducing human capabilities.

3.4.1 Vision

Camera
A camera consists of lenses that focus an image onto a sensor surface.
The sensor surface is implemented using either a charge-coupled device
(CCD) or, more often, a complementary metal-oxide-semiconductor (CMOS)
technology. The basic element of a camera is a light sensor consisting mainly
of silicon that converts light into electrical energy. A camera consists of an
array of millions of these light sensors. Typically, color in a camera image
is represented using three values, red (R), green (G), and blue (B). Hence,
a camera is commonly referred to as an RGB camera. The sensors on the
sensor surface are not sensitive to the color of the light hitting them; they are
only sensitive to light intensity. To make an RGB camera, small color filters
are placed on top of the sensor surface, with each filter letting through only
red, green, or blue light (see Figure 3.5). Cameras are the richest and most

Figure 3.5 Array of
CCDs in RGB
camera.
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28 How a Robot Works

complex sensors available to robots, and through the wide adoption of the
RGB camera in digital cameras and smartphones, it has become miniaturized
and very cheap.
Most cameras have a more restricted field of view than human vision.

Whereas people can see more than 180 degrees, a typical camera might only
see 90 degrees, thus missing a lot of what is going on in the periphery. A robot
with a single camera will have a limited field of view and might have to rely
on other sensors, such as laser range finders or microphones, to give it a sense
of what is going on around it.
Most importantly, the camera image needs to be processed using computer-

vision algorithms in order for the robot to be able to respond to its visual
environment (see Section 3.8.2).

In computer-vision research, investigators often put cameras in the envi-
ronment to facilitate accurate vision. Although this is one of the realistic
approaches to yielding stable performance from computer vision, in
the HRI setting, it is sometimes discouraged because people can feel
uncomfortable around cameras. For example, in a project in which
elderly people were being assisted in their home by a robot, the engineers
would have loved to have cameras on the robot and in the home because
it would have allowed the robot to accurately track and interact with
people. However, the elderly participants were quite firm in their refusal
of the installation and use of cameras, forcing the team to use localization
beacons and laser range finders instead (Cavallo et al., 2014).

Depth sensors
Just as human vision uses stereo vision, knowledge about objects, and self-
motion to figure out the distance to objects, so can computer-vision algorithms
be used to extract a three-dimensional (3D) image from two-dimensional (2D)
information. Stereo cameras have been the technology of choice for a long
time, but in recent years, other technologies have emerged that allow us to see
depth directly, without the need for computer vision. These “depth sensors”
output a “depth image” or RGBD image (standing for red, green, blue, and
depth), a map of distances to objects in view of the camera.
Typically, a depth sensor can measure the distance to objects a few meters

away. Depending on the strength of the emitted infrared light, most depth
sensors only work reliably indoors. There are several ways of making such
depth sensors. One of the typical mechanisms is time of flight (TOF),
in which a device transmits invisible infrared light pulses and measures
the time taken between the moment when it transmitted the light and the
moment when it received the light’s reflection. Because the speed of light
is so high, the camera would need to record the timing of the returning
light with a precision that is out of reach of current electronics hardware.
Instead, the camera emits pulses of infrared light and measures the phase
difference between the light leaving the camera and the light returning to
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Figure 3.6 The
Microsoft Kinect
Azure DK for
Windows sensor.
(Source: Used with
permission from
Microsoft)

the camera. The Microsoft Kinect One, the second iteration of Microsoft’s
game controller, is based on this principle (see Figure 3.6). Despite being
developed as a game controller, it was quickly adopted by robot builders
and is now widely used to give robots a sense of depth. Combined with
appropriate software, the Kinect sensor can also perform skeleton tracking,
which is helpful for figuring out where people are and what they are doing.
Smaller devices are now available that return RGBD images based on a
range of different technologies, including TOF, structured light, and stereo
vision.

Laser range finders
Depth sensors are appropriate for measuring distances up to a few meters. In
order to measure distances at longer ranges, researchers frequently use a laser
range finder, also known as light detection and ranging (LiDAR). A typical
laser range finder can measure distances to objects up to 30 meters away, and
it samples the environment between 10 and 50 times per second. The accuracy
of laser range finders is within a few centimeters.
The basic mechanism of this type of sensor is also TOF (as explained

earlier, under Depth sensors). A laser range finder transmits a single beam of
infrared laser light and measures the distance by measuring the time between
the moment it transmits the laser beam and the time it receives its reflection.
Typically, the transmitter and receiver are on a rotating platform, sweeping the
laser beam around the environment. Thus, the device only measures distance
in a single 2D plane, that is, the plane of rotation of the rotating platform.
Robots can have range finders mounted at different heights to scan for

objects on a horizontal plane. Range finders close to the ground can sense
objects on the floor and people’s legs, whereas range finders that are set higher
up can be used to sense objects on a table or counter (see Figure 3.7).
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Figure 3.7 The PR2
robots (2010–2014):
Can you tell where the
range finder is?
(Source: Willow
Garage)

3.4.2 Audio
Microphones are commonly used devices for auditory sensing, and they
convert sound into electrical signals. Microphones have different sensitivity
profiles; some are omnidirectional, picking up all sounds in the environment,
whereas others are directional, only picking up sounds in a cone-shaped area
in front of the microphone. Combining multiple microphones into an array
allows us to use “beam-forming” techniques, which can separate sound signals
coming from a specific direction from ambient noises. Microphone arrays are
used for sound-source localization, that is, getting an accurate reading on the
angle of a given sound source with respect to its position in relation to the
microphone array.

3.4.3 Tactile sensors
Tactile sensors can be important in HRI, for example, when the robot is
physically guided by the user. Many different implementations exist, from
physical buttons or switches to capacitive sensors, such as those found on
touch screens.
The most commonly used tactile sensor is a mechanical push switch. It is

often used together with a bumper. When a robot collides with an object, the
switch is closed, allowing the robot to detect the collision. Pressure sensors and
capacity sensors, like the ones reading your finger’s position on a touch screen,
can also be used to detect physical contact with the environment. Pressure
sensors can be implemented using a range of technologies but usually contain a
material that changes its electrical properties (resistance or capacitance) when
force is applied (see Figure 3.8).

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



3.4 Sensors 31

Figure 3.8 The
iCub (2004–present)
humanoid has
capacitive tactile
sensors worked into
its fingers, palms,
and torso. (Source:
IIT Central
Research Lab
Genova)

Pressure sensors can help robots recognize whether and how hard they are
touching a person or object. They are also very useful for enabling robots to
pick up and handle objects appropriately. Tactile sensors can furthermore be
used to allow the robot to know whether someone is touching it, and the robot
can be programmed to respond accordingly. For example, the seal-like Paro
robot has a tactile sensor net all over its body that allows it to sense the location
and pressure with which a person is touching it and react by cooing for soft
strokes and crying out after a harder hit.

3.4.4 Other sensors
Various other sensors exist, many of which can be relevant to HRI. Light
sensors read the amount of light falling on the sensor and can be used to
sense a sudden change in light, signaling that something has changed in the
environment. When combined with a light source, they can be used to detect
objects. A simple and very effective obstacle sensor combines an infrared
light-emitting diode (LED) light with an infrared light sensor; when light
bounces back from objects in front of the sensor, it can determine the distance
to objects. This not only is used to detect obstacles in front of the robot but
can also be used to sense when people are approaching the robot.
In recent years, the inertial measurement unit (IMU) has become a popular

sensor. It combines three sensors—an accelerometer, a gyroscope, and a
magnetometer—and is used to read the rotation and motion of the sensor
or, more accurately, the rotational and translational acceleration. Recent
advances in micro-electrical manufacturing have allowed these sensors to be
miniaturized down to a few millimeters. They have become ubiquitous in
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mobile phones and miniature drones, and when used in a robot, they allow
the robot to sense if it falls or to keep track of where it has moved over time.
Far-infrared (FIR) sensors are cameras that are sensitive to long-wavelength

infrared light, which is emitted by warm bodies. They can be used to detect the
presence of people, as used in burglar alarms, or when integrated into an FIR
camera, they can be used to record an image of the temperature of the room.
FIR sensors are still expensive and are mainly used for thermal imaging, but
eventually, they may allow the robot to see people at night or in cluttered
environments.
It is important to realize that, unlike our own senses, sensors do not

necessarily need to be mounted on the robot. A robot might rely on a
ceiling-mounted camera to interpret the social environment, or it could use
a wall-mounted microphone array to localize who is speaking. The whole
environment could, in a sense, be considered part of a robot system.

3.5 Actuators

An actuator converts electrical signals into physical movements. A system
with one actuator typically realizes motion either on one straight line or on
one rotational axis. This means that the system has one degree of freedom
(DOF). By combiningmultiple motors, we can develop a robot that hasmotion
with multiple DOFs, allowing for navigation of a 2D plane or gesturing with
humanlike arms.

3.5.1 Motors
The standard actuator for robots is a direct-current (DC) servo motor (see
Figure 3.9). It typically consists of a DC motor and a microcontroller, with
a sensor such as a potentiometer or an encoder, which outputs the absolute
or relative position of the motor’s output axis. To control the speed, the
controller typically sends pulse-width modulation (PWM) signals to the DC
motor. PWM is an on/off pulse, literally switching the motor on for a few
milliseconds and then back off. This is done up to 100 times per second, and
the duration of the on phase against the off phase (known as the duty cycle)
determines the speed at which the motor rotates. The PWM signal controls
the speed of the motor, and the controller sets the position of the motor. This
is done through feedback control, where the controller continuously reads the
position of the motor and adjusts the motor’s PWM and direction to reach
or maintain a desired position. For motors used in a robot’s arms and head,
the controller typically performs position control to rotate the motor toward
a given commanded angle. For motors used in wheels on a mobile base,
the controller typically performs velocity control to rotate the motor at the
commanded velocity.
Robots can have different configurations and numbers ofmotors, depending

on the body shape and the functions they are meant to perform. Commercially
available cleaning robots, such as Roomba, typically have two motors driving
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Figure 3.9
Connecting servo
motors to each other
allows robots to
move around in
various ways, such
as in this robot arm.
(Source: Trossen
Robotics)

the wheels and one tactile sensor for moving around the room. Thus, Roomba
has two DOFs. A simple nodding robot may have one motor to control its
head direction, meaning that it has one DOF. A better-equipped humanoid
may have three DOFs for its head, controlling pan, tilt, and yaw; two arms
with four to seven DOFs; a mobile base with at least two motors; and sensors
for visual, auditory, and tactile sensing. A robot arm, such as the KUKA (see
Figure 3.10), must have at least six DOFs tomanipulate an object. Three DOFs
are necessary to locate its end effector (e.g., hand) to be in a position within a
reachable range of the object, and another three DOFs are needed to grasp the
object from any direction. A human arm can be approximated as an arm having
seven DOFs, with an additional redundant one DOF beyond the necessary six
DOFs for manipulation.
To grasp objects, a robot arm must have some type of end effector attached

at the end. A 1-DOF gripper can be used to grasp an object, but more complex
robot hands can have asmany as 16DOFs. Android robots, designed to closely
resemble humans, typically have many more (e.g., 50 or more) DOFs and
are able to control their facial expressions and other bodily movements in
relatively nuanced ways compared to simpler robots.
Motors come in many different sizes, speeds, and strengths and thus have

differing power needs. It is therefore important to consider from early on in
the design process how the motor specifications relate to the robot’s design
and what kinds of actions a robot will need to make, such as whether it will
need to pick up a one-kilogram bag or just needs to wave its arms, how big
the robot can be while still fitting in well with its environment, how quickly
it needs to respond to stimuli, and whether it needs to have a portable power
bank or can be plugged into the wall.
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Figure 3.10 KUKA
robot arm. (Source:
KUKA)

3.5.2 Pneumatic actuators
A pneumatic actuator uses a piston and compressed air. Air is delivered from
a compressor or from a vessel containing high-pressure air, which needs
to be attached to the robot in some way. Pistons typically can extend and
contract, depending on which valves are opened to let in the compressed air.
As opposed to electric motors, pneumatic actuators produce linear motion,
which is somewhat similar to human muscle motion, and are able to produce
accelerations and speeds that are difficult to achieve using electric motors.
Hence, they are often preferred for humanoid robots and android robots that
need to gesticulate at humanlike acceleration and velocity (see Figure 3.11).
The compressors that they need to operate can be quite loud, so it is important
to consider how to give the robot access to compressed air without marring
the interaction experience.

Figure 3.11
RoboThespian
(2005–present) uses
pneumatic actuators
to achieve the
acceleration
required to deliver a
convincing
theatrical
performance. The
robot can run for
around a day on a
scuba tank’s worth
of compressed gas,
although it can also
be attached to a
compressor.
(Source: Photo
copyright
Engineered Arts)

3.5.3 Speakers
To generate sounds and speech, standard loudspeakers are used. Speak-
ers are perhaps the cheapest actuator on the robot, but in terms of HRI,
they are indispensable. Where to place a speaker or speakers in the robot’s
body is an important factor to consider when designing a robot that will
interact with people. For example, Takayama (2008) showed that the rela-
tive height from which the voices of a user and an agent interacting with
each other are projected can influence who is seen to be dominant in the
interaction.
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3.6 Middleware

3.6.1 What is a middleware?
Middleware is software that sits among software components, such as
commonly available library modules and the application modules that the
developers created for a specific purpose, as well as the operating system of
the robot’s computer. It is often considered as the “software glue” because its
function is to ease the connection of those software components.
One of the functions of roboticsmiddleware is to deal with the heterogeneity

of hardware. Some applications are flexible about the type of sensors the robot
uses as long as similar sensor data are provided. For instance, a 3D LiDAR
could provide 3D distance data, but these data can be converted into the kind
of 2D data that a 2D laser range finder provides. On the middleware, we can
standardize a data format for 2D laser range finders so that we can use 2D laser
range finders from different companies, as well as other sensors that output
distance information, such as depth sensors and 3D LiDAR, in a similar way.
Another function of the robotics middleware is to help developers deal with

complexity and reuse software modules. Almost all robotic applications are
overly complex. It is unrealistic to create the whole application from scratch.
Moreover, applications are often not really interested in the raw sensory
data. They want to know abstracted information, for example, if a person is
standing in front of the robot. Therefore, once someone creates a functional
software module that enables the detection of a person in front of the robot,
other developers would hope to reuse such an established module for many
other robot applications, which would all be composed of somewhat different
software and hardware components. Thus, “modules” (software components)
are often shared within a community in which developers maintain and reuse
various well-behaving modules.
To better understand the benefits of middleware, we need to take a closer

look at how robots are built and how they work. Let’s assume that we have two
different robots, Marvin and S2E2. Both have two wheels to move around, but
S2E2’s wheels are 10 cm in diameter and Marvin’s wheels are 20 cm. Thus,
these robots are similar to the degree that they use the same methods to move
forward, backward, and around, but they are different in wheel size.
Programmers might want these two robots to move between the fridge and

the couch to deliver a beverage to their human user. For this purpose, the robots
need to drive forward for two meters. The motors themselves can only be
switched on or off. The wheels need a rotation sensor to detect how often they
have turned. It would be really useful if the behavior to deliver the beverage
developed for Marvin could also be used for S2E2. The middleware makes
this possible by abstracting the robots. It translates the two-meter distance to
6.37 rotations for S2E2 and 3.18 rotations for Marvin.
Driving a robot straight ahead for two meters may look like an easy task,

but it is not. It is possible for the wheels to slip, or a cat might dash across
the path. Hence, the robot requires sensors to measure its location within the
room. Marvin could have an ultrasound sensor mounted in front to measure
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the distance between itself and the couch ahead. S2D2 might have a LiDAR
sensor to measure the distance. Again, robots are similar, yet different. The
middleware abstracts the two sensors to simply the distance from itself to the
couch. The programmer can then monitor the progress of the robot and adjust
the duration for which the motors are switched on and off.
But what about the cat that crosses paths with the robot? Both robots need

to be able to move around an obstacle to drive to the couch. The problem
of dynamically planning and adjusting a path toward the couch requires yet
more sensors and software. These components should be able to communicate
with each other so that they can trigger, for example, evasion behaviors. Mid-
dleware allows the different components to directly communicate with each
other. Moreover, the problem of navigating the living room can be abstracted
to both robots so that the software developed becomes reusable. This dra-
matically speeds up the process of software development because solutions
for common problems can be shared. Path planning, obstacle avoidance, and
localization have all been solved as problems in themselves, independent of
the specific robot.

3.6.2 Robot Operating System
The Robot Operating System (ROS) is a middleware platform commonly
used in the robotics and HRI community.1 The name is somewhat misleading
because ROS actually is not an operating system, such as MacOS, Linux, or
Windows. Rather, it is a collection of software modules and tools. It deals with
communications between sensors and modules and offers libraries and tools
to support frequently used robot abilities, such as localization and navigation.
ROS has a large community of users who often share modules on public
open-source software repositories. The more developers use and extend this
middleware to different sensors and actuators, themore attractive this platform
becomes.
Some robot hardware developers decided not to develop their own software

platforms for their robots as, for example, Aldebaran did for its Nao and
Pepper robots. Instead, they offer modules for ROS to control and program
their robots. PAL Robotics is an example of a company that offers ROS
modules for its robots, such as TIAGo (see Figure 3.12).
Although ROS is playing an important role in the robotics and HRI

communities, it still remains middleware that requires technical expertise
to install, configure, and use. It is primarily useful for developers who are
already familiar with code editors, repositories, and libraries. For these, ROS
offers tools to launch code, introspection, debugging, visualization, plotting,
logging, and playback. It does not, however, contain animation tools (see
Section 3.7.2) or behavior editors (see Section 3.7.1). Unfortunately, there is
no visual programming environment that would allow users without technical
knowledge to click together behaviors and interactions.

1 See www.ros.org
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Figure 3.12 The
TIAGo robot family
uses ROS. (Source:
TIAGo Family by
PAL Robotics,
© PAL Robotics S.
L. 2024)

3.7 Applications

A robot is much more than a computer with a body. A computer operates in a
clean digital environment, whereas a robot needs to interface with the messy,
buzzing confusion of the real world. Not only does it need to make sense of
the world, but it also needs to do so in real-time. This environment requires a
radically different approach to robot software.

Architecture models
How should software for a robot be organized? A first rule of thumb, which
is applicable to any software, is that messy program code should be avoided.
Researchers and developers ideally aim to modularize software. One typical
approach is to follow the “sense-plan-act” model (see Figure 3.13), in which
inputs from sensors are processed using software modules specific to percep-
tion, which then convert sensor streams into high-order presentations. For
example, audio recordings of speech are converted into a text transcription,
or camera images are analyzed to report on the location of faces. Next, there
is a section that deals with “planning,” which plans the robot’s next actions
using information gleaned from the sensing process, then outputs commands
to modules for action.
For instance, a person-finding perception module reports on the location of

people detected in a 2D camera image and also returns the size of the heads,
indicative of how close people are to the robot. Next, the planning module
computes the head orientation for the robot to face the nearest speaker and
sends a command tomove the head to the output modules. The output modules
then calculate which angle is needed for the robot’s neckmotors and send these
to the low-level motor controllers.
The sense-plan-act approach is also known as the deliberative approach

because the robot deliberates its next action. Quite often, we want a robot to
respond quickly to external events, without spending a lot of time pondering
what to do next. In this case, we often program simple “behaviors” for the
robot (Brooks, 1991). Behaviors are tightly coupled sensor–action processing
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Figure 3.13
Sense-plan-act model. Sense Think Act

Figure 3.14 The
subsumption
behavior-based
architecture.

Explore World

Wander Around

Avoid Objects

Ac
tu

at
or

s

Se
ns

or
 In

fo
rm

at
io

n

loops that immediately respond to an external event. These can be used to
make an emergency stop when the robot is about to drive down the stairs, but
they can serve equally well in social interaction. When a loud bang is heard or
when a face appears in view, we want the robot to respond as fast as possible.
Act first; think later. Often, there are dozens of behaviors running on the robot,
and mechanisms exist to mediate between which behaviors are active and
which are not. One such mechanism is the subsumption architecture, which
organizes behavior into hierarchies, allowing a behavior to activate or inhibit
others (Brooks 1986; see Figure 3.14).
With this approach, even though the robot does not have an explicit “rep-

resentation” of the world, it can still behave in an apparently intelligent way.
For instance, if a cleaning robot uses two behaviors in parallel, one that avoids
the wall and another that makes it have a slight pull to the right, the resulting,
or emergent, behavior is that of wall following. Even though wall following
wasn’t programmed explicitly, it emerges from the interaction between two
simpler behaviors. The vacuum robot Roomba has been developed with such
an idea in mind.
In HRI studies, we typically find ourselves looking for a middle ground

between deliberative and reactive approaches. We want a reactive control
layer, which responds quickly to subsecond social events, followed by a
deliberative layer, which formulates a coherent response to slower elements
of the interaction, such as conversation.
In light of this, it is important to develop software that can be decomposed

into a number of smaller modules. Even if the complete wealth of a sense-
plan-act model is not needed, it is still common practice to separate modules
into perception, planning, and action.
Planning is diverse in terms of components and complexity and depends

heavily on the robot and the application. A cleaning robot may need to
compute the next location to clean, whereas a companion robot may need
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to make a decision on how it should initiate a conversation with a user. The
software on a Roomba vacuum will therefore be radically different from that
on a Pepper humanoid robot. For interactive robots, various forms of HRI
knowledge will be embedded into the various software modules.
Action modules take care of the actuation and social output of the robot,

such as nonverbal utterances, speech, hand gestures, and locomotion. For
instance, the speech-synthesis module may receive text and convert this into
spoken words, together with timing information that allows the robot to
accentuate its speech with appropriate gestures.

3.7.1 Behavior editors
A robot has to be programmed in order for it to behave in the way we want
it to. This can occur at different levels of detail. We could tell the right
wheel to switch on for two seconds. Many of these detailed instructions can
be combined into a more complex animation. When combining the robot
movements with sensory input, we can describe them as behaviors. Such a
behavior could be “greet the user when you see them for the first time.” These
behaviors can reuse many of the lower-level actions. For example, waving of
the arm could be used for the “greeting behavior” but also for the “call for
help” behavior.
The lower levels of programming are typically done on the top of the

middleware layer, as described in Section 3.6. Working at these lower levels
normally requires technical knowledge of the hardware and software of a
robot. Experts on human and robot behavior often have more expertise in
psychology and design but less experience with programming. Hence, it is
desirable to have behavior design software that can be used without the need
for in-depth programming skills.
Unfortunately, there are currently no open-source or commercial software

programs that fulfill this need for multiple social robots. The developers of
robots can provide tools for their specific robots, but these tools cannot be used
for other robots. A good example is the Choregraphe software fromAldebaran
(see Figure 6.9), which can be used to program the Nao and Pepper robots
without the need for writing code. Users can drag and drop boxes, such as
“Stand Up” or “Say Hello,” to the canvas and connect them with lines to
control the flow of the actions. This visual way of controlling the robot is,
strictly speaking, still a form of programming, but it is often considered more
intuitive. Children are often targeted by these visual programming paradigms,
such as through Scratch (Sweigart, 2016) from the Massachusetts Institute of
Technology (MIT; see Figure 3.15) or Blockly (Lovett, 2017) from Google.
Sony’s current fourth-generation Aibo dog (see Figure 2.10) uses a Blockly-
like environment to enable owners to program its behavior. It does not,
however, include the far superior MEdit motion editor (Cannon et al., 2007)
and programming options (R-Code and Open-R) used from the first to third
generations. These essential programming tools made it possible for Aibo to
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Figure 3.15 The
Scratch programming
environment. (Source:
MIT Media Lab)

Figure 3.16 The
Interaction Composer
programming
environment. (Source:
ATR)

be used in the Robocup competition from 1999 to 2008. Current Aibo dogs
are limited to home applications.
Another example of a platform-specific behavior editor is the Interaction

Composer by ATR. It is used to control the Robovie (see Figure 4.14) series
of robots. It has been used and further developed for over 14 years (Glas
et al., 2016). It uses the visual design programming paradigm in which users
connect elements through lines (see Figure 3.16). Although this software is
abstract enough to potentially be applied to other robots, in practice, it is still
closely linked to a couple of specific robots. Similar to Choregraphe, there
are currently no plans to further open this behavior editor for other robots.
Neither of them is available as open source, and hence others are also unable
to achieve this.
Simulations and virtual representations of robots are used to test the robots’

behavior before downloading and executing them on the actual robots. Gazebo
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software,2 for example, is widely used to simulate a robot in an environment.
It does not, however, easily include human users. The HRI community has
developed other simulation software that is specifically targeted at HRI, such
as MORSE (Lemaignan et al., 2014c). From here, it is only a small step to
building virtual robots in game engines.
Those working with modern game engines, such as Unity and Unreal,

have many similar challenges as HRI researchers. They have to program an
agent, either a robot or a character in a game, to interact with the user. This
includes animations, conversations, and interactions with the environment.
Game engines have already advanced tools for this purpose, and hence HRI
researchers can use them for the design and control of robot behavior. The
USARSim, for example, uses the Unreal Engine (Lewis et al., 2007), whereas
the Robot Engine is based on Unity (Bartneck et al., 2015b), and MORSE is
based on the open-source Blender Game Engine (Lemaignan et al., 2014c).
Connecting the robot’s hardware to the game engine can also easily be
achieved using serial port communication to an Arduino microcontroller. As
with any simulation of reality, it does not capture the noise and complexity
of the real world. Moreover, the most difficult part, humans, is not easily
included in the simulation. There are approaches to simulate simple behaviors
of humans in the simulations (Kaneshige et al., 2021), or virtual reality (VR)
techniques can be used to let human users interact with robots in the simulation
world (Inamura et al., 2021), although those tests are so far rather limited, only
serving as a pretest. Hence, it remains necessary to test the simulated behavior
in the real world. Robots are not, for example, able to move as fast as their
virtual counterparts.
Many of the behavior editors described in this section also include tools

to manage the spoken dialogue between human and robot. Section 7.3.3 in
Chapter 7 describes the functioning of dialogue managers in more detail.

3.7.2 Animation editors
Most of the animation software used to design the movement of robots
borrows from the classical principles of keynote animations that are widely
used in 2D and 3D animations. The animator uses a timeline and adds key
frames to it. The positions of all the robot’s actuators are defined as poses
in these key frames. The pose of the robot can be set by using software to
remotely control the robot into the right position, or users can simply move
the physical robot into the desired position.
The movement between these key-frame poses can then be interpolated

through the use of curves. One of the most popular curves is the fade-in
and fade-out curve, where the movement slowly accelerates at the start and
decelerates toward the end (see Figure 3.17).

2 See https://gazebosim.org/home.
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Figure 3.17 Key-frame
animation in the
Choregraphe software.
(1) Shows a key frame,
and (2) shows the
interpolated movement.
(Source: Software from
Aldebaran, screenshot
by Christoph Bartneck)

3.8 Artificial intelligence and machine learning

Many modules in the software perform some kind of intelligent processing.
Those often benefit from techniques known as artificial intelligence (AI) or
machine learning.
Although AI and machine learning are broad techniques, here we will focus

on introducing some key concepts most relevant to HRI. We provide a basic
introduction to supervised learning, followed by computer vision, which is one
of the typical applications of supervised learning (see Section 7.2 of Chapter 7
for another important application, speech recognition). Other types ofmachine
learning, such as generative models (to be used for speech synthesis and
language generation; see Chapter 7) and reinforcement learning, will also be
introduced.
There is a lot of recent attention to deep learning. In the media, the term AI

is sometimes used interchangeably with the termmachine learning. However,
AI covers a broad set of techniques that perform any form of intelligent
processing like humans do or beyond that. For instance, search algorithms
that are used for motion planning are part of AI techniques, but they do not
employ machine learning. Although general intelligence is one of the ultimate
goals of AI research, it is still far out of reach.
Machine learning represents diverse algorithms that gain benefit (“learn”)

from data. Among them, supervised learning is most typically used in HRI
applications. In this context, “supervised” concerns the fact that human devel-
opers manually provide labels to the training data. Supervised learning is usu-
ally used to address pattern-recognition problems, acquiring simple symbols
(labels) from complex data, such as computer vision and speech recognition.

3.8.1 Supervised learning
Supervised learning is one type of machine learning; it specifically requires
training data with correct labels. To understand what it is, let’s try to imagine
a specific task: classification of emotion in a human face. Using its camera, a
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robot took an RGB image of a human face. How can it tell whether this person
is wearing a happy or a surprised expression?
To solve this task, the robot should have a classifier program that is already

well trained. The classifier converts input data (i.e., a face) into some kind
of feature vector. Then, the trained classifier outputs the label (e.g., happy,
surprised, etc.) based on the input of the feature vector. For simplicity, let’s
assume that the feature vector is a list of motions of various facial muscles;
that is, there is one for each lip, another one for each eyebrow, and so forth.
We know that if people are happy, their lip corners typically go up, and
when surprised, their eyebrows are raised. Instead of explicitly programming
these rules, in supervised learning, we let the classifier acquire them from
the data. (Note that for the sake of simplicity, we made this example rather
straightforward. However, identifying and specifying the relation between an
input vector and a label is usually not at all simple. Thus, performance from
supervised learning usually clearly outperforms explicit programming of such
rules.)
What we provide to the classifier is training data. In our example, these

would be a lot of human faces with correct labels—that is, a lot of happy faces,
with all of them labeled as “happy,” and a lot of surprised faces, with all of
them labeled as “surprised.” Typically, providing labels to all these instances
constitutes intensive human labor. One by one, human workers have to check
each image of a face and add the appropriate labels. Then, with some training
algorithm (if successful), the classifiers acquire appropriate parameters or
rules that enable them to (mostly) correctly classify unseen data. This process
typically takes a huge amount of computation time and also requires a lot
of additional labor by developers, who would work with hyperparameters
(e.g., in the case of a neural network, how many layers, how those layers
connect, how input vectors are represented, number of iterations of updating
parameters, etc.).
Next, we explain the key elements and techniques for supervised learning.

Data sets
Machine learning requires data from which the robot can learn. This training
data set should contain a large number of examples of the thing to be learned,
which may be data from sensors or text, and generally has been manually
annotated by humans. For instance, there can be a data set with camera
images of human faces, and for each image, the emotion of the person is
labeled, such as “neutral,” “happy,” or “angry.” Such a set of example data
and labels is referred to as a data set. Typical data sets contain hundreds of
thousands or even millions of examples. The appropriate size of a data set
varies depending on the complexity of the target machine-learning problem.
Nevertheless, typically, larger data sets yield better performance.
Because the labeling process usually requires extensive labor, developers

often rely on crowdsourcing data (e.g., using Amazon Mechanical Turk).
However, we should be careful about the quality of the data as well as
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the quantity of the data. Having ambiguous or wrong labels will harm the
performance.
Because machine learning heavily relies on the amount and quality of

data, sharing data sets, as well as sharing classifier modules (e.g., speech-
recognition module), is a great community contribution. Researchers some-
times publish data sets together with their classification algorithm/system.
There are specific websites for sharing data sets, such as Kaggle.3

Feature extraction
To aid machine learning, sensor data are often preprocessed by converting
the sensor data into a more suitable representation and by extracting salient
features from the data. This process is called feature extraction. There are
many algorithms to extract features from raw sensor input. For instance,
edge detection highlights the pixels in an image where the intensity abruptly
changes, and a segmentation algorithm identifies regions in an image where
the colors are all similar, which can indicate a face, hair, or an eye (see
Figure 3.18).

Figure 3.18 Canny
edge detection of a
user operating the
buttons on a robot.

Features are, in essence, numbers. These features are often placed into a
feature vector, a row of numbers ready for processing. For instance, one could
count up the number of pixels detected as an edge and use it as one of the
variables of the feature vector. Researchers often manually analyze their data
sets and identify salient features. For instance, with careful observation, one
might find that a child fidgets more than an adult does; once such a feature is
found, one can add variation of motion to the feature vector.

Classification based on training
Supervised learning is often used for classification problems. In classification,
an algorithm decides, based on training data, what class an unknown data point
belongs to. For example, given a camera image of a person, the classifier
decides what emotion the person’s face shows. (Note: Another frequent
approach is regression, in which an algorithm provides a continuous number
from unknown data, such as estimating the age of a person based on their face.)
Suppose we can compute a one-dimensional (1D) feature vector represent-

ing people’s height and have a data set with two classes, “child” and “adult”
(i.e., each data point in the training data will have a label saying whether the
data point is a “child” or an “adult”). The classifier learns a threshold value
from the training data set (e.g., 150 cm) to distinguish the two classes.
In this case, the feature vector contains only a single feature, the height of

the user. We call this a 1D feature vector. Classification algorithms typically
work with thousands of features and try to recognize several classes, but
sometimes up to thousands of classes. Classification errors are more or
less inevitable. For instance, a tall child or short adult would be classified
incorrectly with the previously described 1D feature vector.

3 See www.kaggle.com/datasets
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Classification algorithms perform better (yield fewer errors) when having
access to more data. Ideally, we want classification algorithms to “generalize,”
meaning they correctly handle data that they have never been exposed to.
However, classification algorithms sometimes “overfit” to only the training
data. When this happens, the algorithm does really well on the training data,
but it performs poorly when confronted with new unseen data that are not
included in the training data.
There are various algorithms available for classification problems. Support

vector machines (SVMs) were traditionally often used with handcrafted
features. Nowadays, it is more standard to use deep learning if a large amount
of data is available. For the purpose of explainability, other algorithms, such
as a decision tree, are sometimes used.

Deep learning
Deep learning is a family of neural-network techniques enabled by the
increased availability of computational power. For instance, deep neural
networks (DNNs) rely on artificial neural networks with a large number of
layers of interconnected artificial neurons—hence the name “deep.”
When input is 2D (typically, an image), convolutional neural networks

(CNNs) are used. A CNN also has deep layers of neural networks. However,
it has specific typological constraints among neurons, representing the con-
volution procedure in image processing. It is good at the task of identifying
whether a target pattern exists somewhere within 2D data. For instance, in
an object-detection task, it is more important whether there is a “dog” in the
image or not rather than whether a “dog” is in the top left of the image. The
classifier using a CNN better generalizes to various objects regardless of their
locations in the image. See Section 3.8.2 for more information about computer
vision.
In cases where the input is a time series, a family of recurrent neural

networks (RNNs) is usually used. An RNN is a neural network, typically with
deep layers, and also has a mechanism to keep internal states (i.e., a memory).
At each time step, it receives an input, then provides an output label under the
condition of its own memory. Long short-term memory (LSTM) is one of the
famous RNNs. An RNN is often used for automatic speech recognition (ASR).
In an ASR task, the words to be recognized usually depend on what was
already spoken (e.g., if “how are ...” is already spoken, it is highly likely to hear
“you” as the next word). See Section 7.2 of Chapter 7 for more information
on speech recognition.
Another important deep-learning model is a transformer. It is used for

variant lengths of input, similar to RNNs, but it does not have a memory
mechanism. Instead, it comprises an encoding–decoding mechanism, along
with an attention mechanism that focuses on the important part of the encoded
input. It is often used for natural-language processing (NLP). The famous
examples are language models, such as BERT and GPT-3. When given a
sequence, they predict the next word, and most encode the sequence in doing
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so. Such a model is trained in an unsupervised manner. This encoding is often
used as embedding (a kind of feature vector) for other tasks by using fine-
tuning techniques (see Section 3.8.1). Moreover, it is also used for generative
tasks, such as image generation from natural-language input (see Figure 3.19),
for which the learning process involves huge pairs of images and text, typically
obtained from publicly available data (e.g., from Instagram).

Figure 3.19 AI
generated this image
using the Dall-e
platform. The text
prompt used was
“human playing
with robot.”

Are you struggling with writing an essay or scientific paper? No
problem—let a computer create it for you! Although students may be
most familiar with ChatGTP, other language models have been trained
specifically for generating scientific papers, such as SCIgena (generates
computer science papers, including figures and references) and Galactica
(can generate scientific papers for any field of study; Taylor et al., 2022).
It is important to note that language models do not understand the text
they generate; in essence, they are a slightly shinier version of the “text
completion” feature on your phone. Thus, although these programs
return texts that sound confident, professional, and overall convincing,
they often are factually incorrect.
Although these automatically generated papers are unlikely to pass the

peer-review process of good journals, they could still be used to generate
misinformation, and they thereby pose a serious threat to the integrity
of science. After only two days online, Meta decided to shut down the
demo web page for Galactica. The model itself is still available,b and
people familiar with computer science can continue to (ab)use it.
𝑎 See https://pdos.csail.mit.edu/archive/scigen/.
𝑏 See https://github.com/paperswithcode/galai

For any of the aforementioned deep learning, it takes a large amount
of computational power for training, but recent progress in using parallel
computing and graphical-processing units (GPUs) has allowed us to train these
networks within a reasonable amount of time.
Deep learning usually does not require careful feature extraction by hand.

Instead, deep learning discovers the relevant features from the data by itself.
A drawback is that deep learning requires huge amounts of data: typically,
millions of data points are needed to train an algorithm. For instance, Google
collected an enormous data set containing more than 230 billion data points
to train its speech-recognition algorithm. GPT-3 was trained on 45 terabytes
(TB) of text data from Wikipedia and books.
The complexity of deep learning makes it difficult to know exactly what

the network bases its decisions on (e.g., we may not know what features it has
identified or how it decided to use these features to come to a classification),
which can be particularly problematic for HRI outside of the laboratory when
we need to trust that the system will be robust, safe, and predictable. If the
robot does something wrong, we need to be able to figure out how to debug
and correct the system, as in the case of an autonomous Uber vehicle that had
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trouble classifying a person crossing the road and ran over the person as a
result (Marshall and Davies, 2018).

Transfer learning
The need for large data sets is a significant challenge for HRI because it is
difficult to collect large amounts of data in which humans and robots are
interacting.
The problem is more evident in deep learning. To moderate the problem,

there is a technique known as transfer learning or fine-tuning, which reuses
part of an existing trained network (often, embedding) and adds a small
amount of labeled data to only tune a small part of the neural network (often
near the output layer). By doing so, it learns new skills with a relatively small
data set.
For instance, big language models, such as BERT and GPT, which are

typically trained with trillions of sentences, are used for intent recognition
via transfer learning using possibly less than a hundred sentences Huggins
et al. (2021) (see Section 7.3 for a discussion of how intent recognition is used
in HRI).

3.8.2 Computer vision
Computer vision is an important area for HRI. In essence, computer vision
interprets a 2D array of numbers when working with single images, or a series
of 2D images recorded over a period of time when working with video data.
Computer vision can be rather straightforward and still very effective in the
context of HRI.Motion detection, for example, can be achieved by subtracting
two camera images taken just a fraction of a second apart. Any pixels that
captured motion will have a nonzero value, which in turn can be used to
calculate the region with the most motion. When used on a robot, a motion
detector lets the robot orient itself toward the areas with the most motion,
providing the illusion that the robot is aware of things moving, which, in the
context of HRI, often involves people gesturing or talking.
Another computer-vision technique relevant to HRI is the processing of

faces. The ability to detect faces in an image has advanced and can be
used, for example, to let the robot look people in the eye. Face recognition
(i.e., identifying a specific person in an image) is still a challenge, however.
Impressive progress has been made in the last decade, mainly fueled by the
evolution of deep learning, and it is now possible to reliably recognize and
distinguish between hundreds of people when they are facing the camera. But
face recognition typically fails when the user is seen from the side.
Skeleton tracking is another technique relevant to HRI. In skeleton tracking,

the software attempts to track where the user’s body and limbs are. This
technique was first used in gaming on the Microsoft Xbox console, with
software specific to the Kinect RGBD sensor, but is now a staple in many HRI
applications. Several software solutions exist, but deep learning has enabled
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the reading of skeletons of dozens of users in complex scenarios from a single
simple camera image, without the need for an RGBD sensor. The software for
this, called OpenPose, is freely available and often used in HRI studies (Cao
et al., 2017).
There are many commercial and free software solutions that offer a range

of out-of-the-box computer-vision functionality. OpenCV is perhaps the best-
known offering; it is a free software library developed over 20 years. It can be
used for facial recognition, gesture recognition, motion understanding, object
identification, depth perception, and motion tracking, among others.
Because computer vision often requires a considerable amount of compu-

tational power, which is not realistic on small or cheaper robots, sometimes
the computer-vision process is addressed on the cloud. In this case, the video
stream of the robot is sent over an internet connection to servers on the cloud.
There are commercial-based cloud solutions for face recognition, person
identification, and image classification being sold on a per-use basis.

3.8.3 Reinforcement learning
Reinforcement learning is a very different approach to machine learning. It
does not require any training data prepared in advance and does not necessarily
need human supervision. Instead, a robot learns from successes and failures
by really trying to act. What it learns is the optimal policy, the best action for
each given state, which yields the best reward.
To understand how it works, imagine an example of a crawling robot that

has an arm with two DOFs (search on YouTube using such keywords as
“crawling robot Q-learning” to find examples). For simplicity, assume that
the robot has a choice of only four distinctive actions: stretch out its hand,
touch the ground, fold its arm, and lift its arm from the ground. The question
here is which action the robot should choose.
This is somewhat complex question because the best action depends on the

current pose of the robot. We know that to move forward, it should stretch
out its hand, touch the ground, then fold its arm (here, it moves forward by
“crawling”), and then it needs to detach from the ground. By repeating this, it
can keep moving forward.
Reinforcement-learning algorithms learn such actions if rewards are

designed appropriately. For a crawling robot, we would need a sensor to
sense how much the robot moved forward. Then, the output from the sensor
can be used as a reward. The reward (the fact that the robot moved forward)
is only acquired when the previously described actions are performed in the
correct order. If executed in the wrong order, no reward or even a negative
reward would be given (e.g., if it folded its arm, touched the ground, and then
stretched out). Many reinforcement-learning algorithms start from a random
search, trying various actions from various states (here, we could use the
current pose of its arm as the state), and memorize the rewards obtained for a
given state. By repeating trials, the algorithm hopefully converges to find the
best policy.
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Various reinforcement-learning algorithms are available. Among them, the
most famous isQ-learning, which is designed to remember the best reward for
each “Q-state,” defined as the combination of action and state. One expansion
of Q-learning with deep-learning techniques is referred to as deep Q-learning
(DQN), which uses a deep neural network to represent the Q-state.
Reinforcement learning typically takes time to repeat thousands of trials

until it converges, even for relatively simple problems like the aforemen-
tioned crawling robot. Moreover, during the trial-and-error process, a robot
unfortunately needs to fail a lot in order to “unlearn” all the specific ways in
which it can be wrong. Sometimes, researchers try to use physics simulations
to moderate these learning costs. For example, it took several months with
seven robot arms learning in parallel for the arm to learn how to grasp various
objects, whereas a model using a simulation and previously collected data
took only a few days to learn the same behavior Ibarz et al. (2021). Applying
reinforcement learning to HRI problems is not straightforward–because of the
cost of failures, the time involved, and the difficulty in using simulation—yet
researchers have started to try to findmethods to make it feasible for HRI (e.g.,
Mitsunaga et al. 2008, McQuillin et al. 2022).

3.8.4 Adaptation
Both the user and the robot are adaptive systems. Humans have sophisticated
skills to adapt their behavior and communication to their environment and
others. When talking to a child, for example, adults tend to use simpler words
and sentence structures, a phenomenon often referred to as motherese (Wrede
et al., 2005; Rohlfing et al., 2005). Similarly, users also tend to adapt their
communication when talking to a robot. They tend to speak slower and louder,
particularly if the speech-recognition system does not seem to work properly
(Kriz et al., 2010).
In return, robots are commonly expected to adapt their behavior to their

users (Rossi et al., 2017) to optimize the interaction. Allan et al. (2022), for
example, showed that users benefit from different types of praise from a robot
based on their implicit self-theory. Users who consider self-attributes, such as
intelligence, as malleable (incremental theory) prefer praise for their effort,
whereas users who consider it to be unchangeable (entity theory) prefer to
receive praise for their ability.
The robot needs to collect considerable data about each user to be able to

infer characteristics such as these. Applying reinforcement learning would be
one of the possible implementations for doing so. However, these data can
only be collected in real-time, and hence data collection is limited. Therefore,
it is still quite challenging research.
In both of these adaptations, the human and the robot change their own

behavior. Humans have the additional option of explicitly changing the robot
to their preferences. They may, for example, switch to a male voice or
prefer a certain color of plastic over another. This adaptation is referred
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to as customization. It does not require any sophisticated machine-learning
techniques other than the adjustment of certain parameters.

3.9 Limitations of robotics for HRI

There are several limitations of robotics, some of which are specific to HRI
and some of which apply to robotics in general. One general challenge is that a
robot is a complex system that needs to translate between the analogue world
and the digital internal computation of the robot. The real world is analogue,
noisy, and often very changeable, and the robot first needs a suitable digital
representation of the world, which the software then uses to make decisions.
Once a decision is made, this is translated back into analogue actuation, such
as speaking a sentence or moving a leg.
Another major challenge applicable to robotics at large is that of learning.

Currently, machine learning needs to iterate through millions of examples
to slowly nudge itself toward performing a task with a reasonable level of
skill. Despite speedups due to advances in DNNs and GPUs, at the time of
writing, computers need days or often weeks to learn, and this is only when
all the learning can happen internally, for example, in simulation or using
prerecorded data. Learning from real-time data that a robot samples from the
world is still virtually impossible. Related to this is the challenge of transfer, or
the performance of one skill transferring to another. For example, people can
learn to play one game of cards andwill then be able to transfer that knowledge
to quickly pick up another game of cardswith different rules.Machine learning
typically struggles with this task and needs to start the learning of a new
challenge from scratch.
The seamless integration of the various systems on a robot also represents a

major challenge. Speech recognition, natural-language understanding, social-
signal processing, action selection, navigation, and many other systems all
need to work together in order to create convincing social behavior in a
robot. On simple robots, this is manageable, but on more complex robots, the
integration and synchronization of these various skills are still beyond our
grasp. Face detection, emotion classification, and sound-source localization
might each work well in isolation, but bringing the three together to make
the robot respond in a humanlike manner to people approaching the robot is
still a challenge. Greeting people who smile at the robot, looking up when the
door slams, or ignoring people who show no interest in the robot may sound
easy, but it is difficult to build such behavior that consistently works well. The
challenge becomes formidable once further skills are added. Conversational
robots, which aim to interact with people using natural language in addition to
using their full suite of sensors to react in an appropriate manner, are only now
being attempted in research labs across the world. It is unlikely that a robot will
be built in the next decade that can handle a conversation as well as people can.
Robots and AI systems in general struggle with semantics: they often do not

truly understand what happens around them. A robot might seem to respond
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well to a person approaching it and asking for directions, but this does not
mean that the robot understands what is happening—that the person is new
to the space or where the directions it gives actually lead to. Often, the robot
has been programmed to face people when they come near and to respond to
the key words it hears. Real understanding is, at the moment, still exclusive to
humans. Although there are research projects on imbuing AI systems with
a sense of understanding (Lenat, 1995; Navigli and Ponzetto, 2012), there
are not yet robots that can use their multimodal interaction with the world
to understand the social and physical environment.

The reasons why AI has not yet achieved a humanlike general intelli-
gence level are manifold, although conceptual problems were identified
right from the outset. Searle (1980) pointed out that digital computers
alone can never truly understand reality because they only manipulate
syntactical symbols that do not contain semantics. In his Chinese room
thought experiment, a slip of paper with Chinese symbols is slid under
the door of a room (Searle, 1999). A man inside the room reads the
symbols and comes up with a response by applying a set of rules he
finds in a book full of instructions containing more Chinese characters.
He then writes the response in the form of other Chinese characters and
slides it back under the door. The audience behind the door might be
under the impression that the man in the room understands Chinese,
whereas in reality, he just looks up rules and has no understanding
of what those symbols really mean. In the same manner, a computer
also only manipulates symbols to come up with a response to input.
If the computer’s response is of humanlike quality, does that mean the
computer is intelligent?
According to Searle’s line of argument, IBM’s chess-playing com-

puter Deep Blue does not actually understand chess, and DeepMind’s
AlphaGo does not understand the game of Go. Both programs may
have beaten human masters of the game, but they did so only by
manipulating symbols that were meaningless to them. The creator of
Deep Blue, Drew McDermott, replied to this criticism: “Saying Deep
Blue doesn’t really think about chess is like saying an aeroplane doesn’t
really fly because it doesn’t flap its wings” (1997). That is, he debated
that as far as it functions as it is supposed to, a new machine or AI
does not need to replicate all the details of humans, animals, or birds.
This debate reflects different philosophical viewpoints about what it
means to think and understand and is still underway today. Similarly,
the possibility of developing general AI remains an open question.
All the same, progress has been made. In the past, a chess- or Go-
playing machine would have been regarded as intelligent. But now it is
regarded as the feat of a calculating machine—our criteria for what con-
stitutes an intelligent machine have shifted along with the capabilities of
machines.
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In any case, no sufficiently intelligent machine has yet been built that would
provide a foundation for many of the advanced application scenarios that have
been imagined for robots. Researchers often fake the intelligence of the robot
by applying the Wizard-of-Oz method (see Section 10.6.1 on page 182).
However, there are also some basic problems that we do not expect to find

a solution for in the near future. One of the most basic limitations of HRI is
the battery capacity. Most robots cannot operate for longer than an hour before
having to recharge. This is a major constraint for mobile robots, particularly
those that navigate in unstructured environments. For instance, once a robot
is on its way somewhere, it already has to plan its return. Furthermore, this
limitationmakes it difficult for humans to experience longer-term interactions.
Finally, robots like Nao cannot return to their charging station autonomously,
meaning that either the user or the experimenter has to manage its battery
charging.
Another physical limitation concerns the speed at which the robot

can move. Here, we mean not only the robot’s speed of driving around
but also the speed with which a robot is moving its arms and head.
Piumsomboon et al. (2012), for example, tried to motion-capture a Haka
dancer and mapped his movements in real-time to several Nao robots (see
Figure 3.20). The robot could only keep up with the human dancer if the
dancer moved unnaturally slowly. Once the dancer unleashed his powerful
Haka dance, the robots fell hopelessly behind. Another often-overlooked
limitation of robots is that they cannot move silently. Humans can move their
arms without making any noticeable sound. Robots, on the other hand, use
electrical motors, gears, or pneumatic actuators. Although this inability to
sneak around might be welcomed by some, it can be rather disturbing when
humans want to go to sleep.
If robots were to create their top 10 list of things they hate about the world,

then gravity would certainly be among the top entries. Simply refraining from

Figure 3.20 Nao robot
trying to imitate a Haka
dancer.
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falling over is incredibly hard; in humans, this process requires an extremely
fine-tuned close collaboration between different senses, such as vision, the
vestibular system, haptics, and the body’s sense of where one is in space
(Wolfe et al., 2006). Science has yet to artificially recreate a similar kind of
balance system. Furthermore, keeping in balance while moving around is even
harder, particularly when the floor is uneven or when the robot has no method
of getting up again.
From a human perspective, we are left wanting for the robot support that we

have been promised for so many years. Even today, emptying a dishwasher
remains an impossible task for robots. Over half a century ago, in 1966,
the British Broadcasting Corporation (BBC) created a short film about Able
Mabel, the Robot Housemaid.4 It promised that robots would soon be able
to handle many household tasks. Meredith Thring argued in this film that it
would only take 1 million pounds to produce the first prototype. Needless to
say, this vision of the future was far too optimistic.
The requirements of HRI often imply unrealistic assumptions about what

can be achieved with current technology, and novice research and the public
should be aware of the limitations of robotics and AI.

3.10 Conclusion

Robots are made from multiple software modules connected with sensors
and actuators. Software design requires HRI knowledge, and conversely, HRI
researchers need to have a basic understanding of software in order to provide
useful knowledge for future HRI developers. For a robot to be successful, the
different components need to be chosen and integrated with an eye toward the
specific HRI application and its needs. Despite limitations, however, robots
can be designed to interact successfully with humans in various types of short-
term, and sometimes longer, interactions.

Questions for you to think about:

• Chapters 2 and 3 introduced various robot types that are available on
the market. What sensors do these robots have?What actuators do they
have? What hardware components do you think are crucial?

• Imagine a scenario where you want to use a smart social robot. Which
sensors and actuators should it have?What skills should the robot have,
and is software available to deliver these skills?

• What kind of data set would be needed to train a machine-learning
algorithm for a new interaction capability of a robot, such as distin-
guishing your face from others?

4 See www.bbc.co.uk/archive/mabel-the-robot-housemaid-1966/zhnvxyc
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3.11 Exercises

The answers to these questions are available in the Appendix.

** Exercise 3.1 Sensors A list of technologies follows. Which ones are
typically used as sensors on robots? Select one or more options from the
following list:

Camera1.
Loudspeaker2.
Microphone3.
LED light4.
LiDAR5.
Servo motor6.
Ultrasound sonar7.

* Exercise 3.2 Pepper’s sensors, part 1 Have another look at Pepper (page
15).What sensor technologies does this robot have? Select one ormore options
from the following list:

Radar1.
Depth camera2.
Capacitive touch sensor3.
Global Positioning System4.
Inertial measurement unit5.
Oxygen sensor6.

*** Exercise 3.3 Pepper’s sensors, part 2 Based on your answer to the
previous question, what functions do you think these sensors serve?
** Exercise 3.4 How do sensors work? Which of the following statements
are correct? Select one or more options from the following list:

The light sensor in a camera can see only brightness.1.
A TOF infrared light sensor can measure depth up to 300 meters.2.
Inertial measurement units combine an accelerometer, microphone, and
gyroscope.

3.

Typical cameras can see up to 90 degrees.4.
An RGBD sensor is a camera that can estimate the distance to objects.5.
Omnidirectional microphones pick up sound from all around.6.

*** Exercise 3.5 How do servo motors work? Hobby servos are simple
motors found in cheap robots. Which of the following statements are true?
Select one or more options from the following list:

The position of a servo is controlled by the duty cycle of the control signal.1.
The speed of a servo is controlled by the voltage.2.
The servomotor continuously changes direction tomaintain its set position.3.
The position and speed of a servo are controlled by switching it on and off.4.
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An external position sensor is used to control the position of the servo.5.
A servo motor has two output axes.6.

* Exercise 3.6 Finger Have a look at your pointing finger. How many DOFs
does it have?
** Exercise 3.7 Degrees of freedom What is theminimumDOFs that a robot
needs to drive to every location in a room?
**Exercise 3.8 Grasping What is theminimumDOFs that a robot arm needs
to grasp an object in reach from any direction?
** Exercise 3.9 Linear actuators What type of linear actuators are often
used in social robots? Select one of the following options:

Hydraulic actuators1.
Pneumatic actuators2.
Aquatic actuators3.
Bimorph actuators4.

** Exercise 3.10 Control model What model is typically used to control a
robot? Select one of the following options:

𝐴𝑐𝑡 → 𝑡ℎ𝑖𝑛𝑘 → 𝑠𝑒𝑛𝑠𝑒1.
𝑆𝑒𝑛𝑠𝑒 → 𝑡ℎ𝑖𝑛𝑘 → 𝑎𝑐𝑡2.
𝑆𝑒𝑛𝑠𝑒 → 𝑎𝑐𝑡 → 𝑡ℎ𝑖𝑛𝑘3.

* Exercise 3.11 Middleware Which of the following are not middleware?
Select one or more options from the following list:

Windows1.
Linux2.
ROS3.

** Exercise 3.12 Middleware functions This question focuses on robot
middleware, such as ROS. Which statements are true? Select one or more
options from the following list:

Offers basic functions to access hardware, like access to storage or
input/output (IO) port

1.

Uses different hardware (e.g., sonar and LiDAR) in an interchangeable way2.
Automatically creates code to realize HRI without the need for explicit
coding

3.

Provides standardized environments for programmers to share and reuse
their modules

4.

Helps programmers visualize what is communicated between modules5.

*** Exercise 3.13 Machine learning Imagine we are going to build a
classifier using deep learning to, for example, identify whether there is a
person in a camera image or not. Which of the following statements are true?
Select one or more options from the following list:
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If we can maintain the quality of the data, more data will result in better
performance.

1.

Thanks to deep learning, we can train a classifier from scratch with only a
small amount of data.

2.

Thanks to deep learning, we do not need to handcraft features. We can
directly use raw image data.

3.

Thanks to deep learning, we do not need to provide labels. We can assign
random labels to the data to start training.

4.

We do not need to care about the topology of the neural network. Anything
like DNN, CNN, RNN, or transformer can be chosen for this simple image-
classification task, as long as it is a deep-learning method.

5.

*** Exercise 3.14 Robots that work with people Watch this video, and
then answer the question that follows.

Andrea Thomaz, “Next Frontier in Robotics: Social, Collaborative Robots,”
https://youtu.be/O1ZhWv84eWE

Thomaz demonstrates a robot meant to work together with people in
everyday environments. Looking at Thomaz’s robot, describe what kinds
of technical components and capabilities it has that allow it to interact with
people. What are the different social cues that the robot uses, and how
do its components work together to produce those cues in the course of
an interaction? The description does not have to go into great detail, but
do describe how you think different components (e.g., gaze, manipulation,
movement in space) work together in these interactions.

1.

Future reading:

• For basic AI:
Russell, Stuart, and Norvig, Peter. Artificial Intelligence: A Modern
Approach. Pearson, Essex, UK, 4th edition, 2022. ISBN 978-
1292401133. URL www.worldcat.org/oclc/1242911311

• For recent machine learning:
Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep Learn-
ing. MIT Press, Cambridge, MA, 2016. ISBN 9780262035613. URL
www.deeplearningbook.org

• For basic robotics:
Matarić, Maja J. The Robotics Primer. MIT Press, Cambridge, MA,
2007. ISBN 9780262633543. URL www.worldcat.org/oclc/604083
625

• For diverse topics in robotics:
Siciliano, Bruno, and Khatib, Oussama. Springer Handbook of
Robotics. Springer, Berlin, 2016. ISBN 9783319325507. URL
www.worldcat.org/oclc/945745190
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4

Design

What is covered in this chapter:

• How a well-designed robot can lift interactions to the next level
(physical design).

• How people do not treat robots as an assembly of plastic, electronics,
and code but rather as humanlike entities (anthropomorphism).

• How HRI research draws on psychological theories, such as anthropo-
morphism, to design and study people’s interactions with robots.

• Design methods and prototyping tools used in human–robot
interaction.

How does a pile of wires, motors, sensors, and microcontrollers turn into a
robot that people will want to interact with? Although it sounds like magic,
the trick of turning metal and plastic into a social interaction partner is in the
iterative and interdisciplinary process of robot design.
This chapter starts by exploring some general design principles and consid-

erations (Section 4.1) before moving on to anthropomorphic design specif-
ically in Section 4.2. In Section 4.3, different methods of designing are
discussed, and Section 4.4 covers the different approaches to testing and
prototyping the design you came up with. The impact of culture on HRI
design is discussed in Section 4.5, and Section 4.6 wraps up this chapter by
highlighting the ethical and philosophical considerations that come into play
when designing a robot.
Robot design is a fast-growing field of research and practice in human–

robot interaction (HRI), and the need to develop robots that are able to interact
with people challenges the existing ways of designing robots. Often, robots are
developed by engineers, and their interaction abilities are then tested by social
scientists. This process of design starts from the inside and builds up to the
outside—solving technical issues first and designing the robot’s appearance
and behavior to fit. For example, a mobile platform such as a TurtleBot
(see Figure 4.1) might be used as a starting point, with the desired sensors
and actuators added to the body later on. If time allows, a casing could be
designed to cover up all the technology. The robot’s appearance and specific
social interaction capabilities then have to be built on top of this technical
infrastructure. This common approach to robot building is also known as
the “Frankenstein approach.” In this method, we take whatever technology
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Figure 4.1 A
TurtleBot2
(2012–present)
platform. (Source:
Photo provided by
Yujin Robot)

is available and put it together to obtain a set of specific robotic functions.
Clearly, such an approach is suboptimal because it commonly fails to consider
a human-centered perspective that also takes into account the impact of the
context and the envisioned use case.
Therefore, it is important to complement a purely technological develop-

ment perspective with more holistic approaches to robot design. That is, it
actually matters to consider the needs, values, and preferences of potential
stakeholders and end users early on in the design process. It matters where
these end users use the robot and for what purpose. Based on the characteristics
of the users and the context of use, one can then decide on specific robot design
features, such as appearance, interaction modalities, and level of autonomy.
This might be termed a more “outside-in” mode of developing robots, in
which the design process starts from the interaction that we expect the robot
to be engaged in, which will determine its outside shape and behaviors.
Once the design has been settled on, we work all the technology into it.
Many commercial social robots are designed, at least to some degree, from
the “outside in”—considering the users and how they might interact with a
person and selecting or even developing technology appropriately. Honda’s
ASIMO, for example, was chosen to be smaller in size so that it would not
be intimidating to users. Pepper was initially designed to interact with shop
visitors in Japan and has a hinged waist that allows it to bow to them as a
greeting. The seal-like robot Paro was designed to inspire petlike interaction
and was initially shaped like a cat, but its design was changed to a seal to
address critiques users had due to their familiarity with how real cats behave;
at some point in its iterative design, it also had wheels to be able to move
around on the floor, but these were removed because the older adults who
were its main users often had limited mobility.
Designers are trained to approach the design of artifacts in this way

(see Figure 4.2 for an example) and are able to make valuable contribu-
tions (Schonenberg and Bartneck, 2010). Their contribution is not limited
to only the aesthetics of the robot; designers also have the skill to create
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Figure 4.2
Mythical robots
designed from the
outside to the inside.
First, the shape of
the robots was
sculptured before
fitting the
technology into it.

thought-provoking robots that challenge our understanding of the roles of
humans and robots.
This form of robot design often requires incorporating expertise from sev-

eral disciplines—for example, designers might work on developing specific
concepts for the design, social scientists may perform exploratory studies
to learn about the potential users and context of use, and engineers and
computer scientists need to communicate with the designers to identify how
specific design ideas can be realistically instantiated in working technology
(Šabanović et al., 2014). HRI design can take advantage of existing robots,
designing specific behaviors or use tasks for them that fit particular applica-
tions, or it can involve the development of new robot prototypes to support
the desired interactions. In either case, HRI design both takes advantage of
existing design methods and develops new concepts and methods specifically
suited to the development of embodied interactive artifacts (i.e., robots).

4.1 Design in HRI

4.1.1 Robot morphology and form
A common starting point for designing HRI is to think of what the robot is
going to be doing. There is a debate about whether form follows function, in
which the shape of an object is largely determined by its intended function or
purpose, or if the reverse holds true. In HRI, clearly, form and function are
inherently interconnected and thus cannot be considered separately.
Contemporary HRI designers have several different forms of robots to

choose from. Androids and humanoids most closely resemble humans in
appearance, but they have a lot to live up to in terms of capabilities. Zoomor-
phic robots are shaped like animals with which we are familiar (e.g., cats or
dogs) or like animals that are familiar but that we do not typically interact with
(e.g., dinosaurs or seals). HRI designers, eager to make robot appearances
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Figure 4.3 Zoomorphic
and minimalistic robots.
From left to right: Muu
(2001–2006), Keepon
(2003–present), and
Naked Invisible Guy.
(Source: Keepon photo
from Hideki Kozima,
Tohoku University,
ASIMO from Honda)

Figure 4.4 Sociable
Trash Box robots are an
example of
robjects—robotic
objects with interaction
capabilities. (Source:
Michio Okada)

commensurate with their limited capabilities, also often design minimalist
robots, which explore the minimal requirements necessary for inspiring social
HRI, such as Muu (see Figure 4.3, left) or Keepon (see Figure 4.3, middle).
The arguably most minimalistic robot is the busker robot, which consisted
of a pair of animated sandals on top of a box with a signpost in front of
it proclaiming “Naked Invisible Guy” (Partridge and Bartneck, 2013) (see
Figure 4.3, right).
Recently, the HRI field has started considering “robjects,” interactive

robotic artifacts whose design is based on objects rather than living creatures,
for example, a robotic ottoman (Sirkin et al., 2015), social trash cans (see
Figure 4.4), or robotic toy boxes (Fink et al., 2014). Because the design space
of robots is relatively large and considers questions regarding form, function,
level of autonomy, interaction modalities, and how all those fit with particular
users and contexts, an important aspect of design is figuring out how to make
appropriate decisions about these various design aspects.

4.1.2 Affordances
The notion of affordances represents an important concept in design. This
notion was initially developed as a concept in ecological psychology (Gibson,
2014), where it referred to the inherent relationship between an organism and
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its environment. For example, a stone can be picked up by us and thrown away,
but to a mouse, it can serve as a hiding place. The stone “affords” different
interactions. This concept was amended by Don Norman 2008 to describe the
perceivable relationships between an organism and its environment that enable
certain actions (e.g., a chair is something to sit on, but so is a stair).
A designer needs to design a product while making its affordances explicit.

Furthermore, the designer needs to incorporate user expectations and cul-
tural perceptions. For Norman (2008), these “design affordances” are also
an important way to develop common ground between robots and humans
so that people can understand the robot’s capabilities and limitations and
adapt their interaction accordingly. A robot’s appearance is an important
affordance because people tend to assume that the robot’s capabilities will
be commensurate with its appearance. If a robot looks like a human, it is
expected to act like a human; if it has eyes, it should see; if it has arms, it
should be able to pick up things and might be able to shake hands. Another
affordance can be the robot’s interaction modalities. If a robot speaks, for
example, saying, “Hello,” people will also expect it to be able to understand
natural language and carry on a conversation. If it expresses emotions through
facial expressions, people might expect it to be able to read their emotions.
Other robotic affordances can be based on technical capabilities; for example,
if it has a touch screen on its body, people might expect to interact with the
robot through the touch screen. Because robots are novel interaction partners,
the affordances used by designers are particularly important for signaling
appropriate ways of engaging with them.

4.1.3 Design patterns
Because the focus of HRI is the relationship between humans and robots, the
task of HRI design is not only to create a robotic platform but also to design
and enable certain interactions between people and robots in various social
contexts. This suggests that the main units of design that need to be considered
are not only the characteristics of individual robots (e.g., appearance, sensing
abilities, or actuation) but also what Peter Kahn calls “design patterns” in HRI,
inspired by Christopher Alexander’s idea of design patterns in architecture
(Kahn et al., 2008). Such patterns describe “a problem which occurs over and
over again in our environment, and then describes the core of the solution to
that problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice” (Alexander, 1977, p. x).
Within HRI, Kahn et al. (2008) suggest that patterns should be abstract

enough that you can have several different instantiations, that they can be
combined, that less complex patterns can be integrated into more complex
patterns, and that they serve to describe interactions with the social and
physical world. For example, the didactic communication pattern (where
the robot assumes the role of a teacher) could be combined with a motion
pattern (where the robot initiates a movement and aligns it with the human
counterpart of the interaction) to create a robotic tour guide. Kahn et al.
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suggest that HRI design patterns can be developed based on observation of
human interactions, prior empirical knowledge about humans and robots, and
designers’ experiences with HRI, through an iterative design process. Some
patterns they developed and have used in their designs are things like the
“initial introduction” of the robot, or “in motion together,” where the robot
moves along with the person. Although Kahn et al.’s design patterns are not
meant to be exhaustive, they emphasize the idea that the design should focus
on the relationship between humans and robots.

4.1.4 Design principles in HRI
When combining the two ideas of design affordances and patterns in the
process of HRI design, the usual design types that robots may be divided
into, such as androids and humanoids, zoomorphic robots, minimally designed
robots, or robjects, are no longer the main design focus or question. Instead,
designers consider how different robot forms and capabilities fit into or
express particular HRI design patterns and how they can be designed as
affordances that appropriately signal the robot’s interaction capabilities and
purpose. With this in mind, HRI researchers have suggested some of the
following principles to consider when developing the appropriate robot forms,
patterns, and affordances in HRI design.
Matching the form and function of the design: If your robot is humanoid,

people will expect it to do humanlike things—talk, think, and act like a human.
If this is not necessary for its purpose, such as cleaning, it might be better to
stick to less anthropomorphic designs. Similarly, if it has eyes, people will
expect it to see; if it talks, they will expect it to be able to listen. People can
also be prompted to associate specific social norms and cultural stereotypes
with robots through design; for example, researchers have shown that people
might expect a female robot to be more knowledgeable about dating or that
a robot made in China would know more about tourist destinations in that
country (Powers et al., 2005; Lee et al., 2005)
Underpromise and overdeliver:When people’s expectations are raised by a

robot’s appearance or by introducing the robot as intelligent or companion-
like, and those expectations are not met by its functionality, people are
obviously disappointed and will negatively evaluate the robot. Sometimes
these negative evaluations can be so serious that they affect the interaction.
To avoid such problems, it is better to decrease people’s expectations about
robots (Paepcke and Takayama, 2010), which might have been increased by
how robots are portrayed in society, as described in the “Robots in Society”
chapter (see Chapter 12). This might even include not calling your design a
robot because the word itself often connotes quite advanced capabilities to
members of the public.
Interaction expands function: When confronted with a robot, people will,

in effect, fill in the blanks left open by the design depending on their values,
beliefs, needs, and so on. It can thus be useful, particularly for robots with lim-
ited capabilities, to design them in a somewhat open-ended way. This allows
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people to interpret the design in different ways. Such an open-ended design
approach has worked particularly well with, for instance, the seal-like robot
Paro (see Figure 2.8). This baby seal robot invokes associations with pets that
people have had, but it also does not get compared to animals they know,
such as cats and dogs, which would inevitably lead to disappointment. As
a consequence, Paro becomes a natural part of the interactions with humans
and passes as a petlike character even though its capabilities are significantly
below those of a typical domestic animal or that of an actual seal baby
(Šabanović and Chang, 2016).
Do not mix metaphors: Design should be approached holistically—the

robot’s capabilities, behaviors, affordances for interaction, and so forth should
all be coordinated. If you design a humanlike robot, people may find it
disturbing if it has skin covering only some parts of its body. Similarly, if
the robot is an animal, it may be strange for it to talk like an adult human or
try to teach you mathematics. This is related to the uncanny valley theory (see
p. 66) because inappropriately matched abilities, behaviors, and appearance
often lead to people having a negative impression of the robot.

Take a look at the two pictures in Figure 4.5. How do they make you feel?
Although both of these android representations of the science-fiction
writer Philip K. Dick are perhaps a bit strange and uncanny, the one
that seems unfinished and shows the robot’s insides also mixes design
metaphors—the robot is both humanlike andmachinelike, making it even
more disturbing.

Like Kahn et al.’s (2008) design patterns, these design principles are
not exhaustive but are meant to inspire thinking about how to approach

Figure 4.5 Philip
K. Dick Robot
(2005; rebuilt in
2010).
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designing HRI in a way that acknowledges and incorporates the interdepen-
dence between human and robot capabilities, the need for interaction partners
to be intelligible to and support each other, and the effects of the context of
interaction on its success.

4.2 Anthropomorphization in HRI design

Have you ever found yourself yelling at your computer because it suddenly
crashes while you are working on an essay that is due in just a few hours? You
urge the computer to please bring it back again after restarting, gently touching
the mouse after realizing that, indeed, the file reopens, and you can continue.
You sigh in relief because “Genius”—that’s what you call your computer
when no one is around to hear you—did not let you down. In fact, what you
have pictured now is an ordinary scenario of a person humanizing an object,
anthropomorphizing it. What a tongue twister. But what is it about, in fact?
Anthropomorphization is the attribution of human traits, emotions, or

intentions to nonhuman entities. It derives from ánthrōpos (meaning “human”)
and morphē (meaning “form”) and refers to the perception of human form in
nonhuman objects. We all experience anthropomorphism in our daily lives.
“My computer hates me!”; “Chuck [the car] is not feeling well lately”; “That
grater looks like it has eyes”—you’ve either heard or uttered sentiments like
this before. The latter is a special example of anthropomorphization called
pareidolia, the effect of seeing humanlike features in random patterns or
mundane objects. When the Viking 1 spacecraft took a photo of the Cydonia
area on Mars on July 25, 1976, many people saw a face on Mars’s surface,
which sparked many speculations about the existence of life on Mars (see
Figure 4.6). The National Aeronautics and Space Administration (NASA) sent
its Mars Global Surveyor to the exact same location in 2001 to take higher-
resolution photos under different lighting conditions, which revealed that the
structure photographed in 1976 is certainly not a human face.

Figure 4.6 The face on
Mars is an example of
pareidolia. On the left is
the photo from 1976,
and on the right is the
same structure
photographed in 2001.
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We will discuss anthropomorphization and anthropomorphism, respec-
tively, in some detail as a case study of a specific design theme in HRI
that incorporates technical development, psychological study, and design to
enable social HRI. A robot’s level of human-likeness is one of the main
design decisions that robot designers need to take into account because it
influences not only the robot’s appearance but also the functionality it needs
to offer and the social perceptions that are elicited by both form and function.
In Chapter 8, we will go deeper into the psychological theories underlying
anthropomorphism and the consequences for impression formation.

4.2.1 Attributing humanlike characteristics to robots
People’s innate predisposition to anthropomorphize the things around them
has become a common design affordance for HRI. In anthropomorphic design,
robots are constructed to have certain humanlike characteristics, such as
appearance, behavior, or certain social cues, that inspire people to see them as
social agents. At one extreme, android robots are designed to be as humanlike
as possible; some have been fashioned as exact replicas of living humans,
like a moving Madame Tussaud’s wax figure (see, for example, Geminoid in
Figure 4.7), or as representations of aggregated human features (e.g., Kokoro,
depicted on the far right in Figure 4.8). Humanoid robots use a more abstract
notion of human-likeness in their anthropomorphic designs. ASIMO (second
from the right in Figure 4.8), for example, has a human body shape (two
arms and legs, a torso, and a head) and proportions, but it does not have eyes.
Rather, its head resembles an astronaut’s helmet. Nao (see Figure 4.8, middle)
similarly has a humanlike body, as well as two light-emitting diode (LED)
eyes that can change in color to connote different expressions, but no mouth.
Some other humanoids, such as Robovie, Wakamaru (second from the left in

Figure 4.7 The
Geminoid HI 4
robot (2013), a
replica of Hiroshi
Ishiguro. (Source:
Hiroshi Ishiguro)
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Figure 4.8 People
readily
anthropomorphize all
kinds of robots, with
appearances ranging
from minimalist to
indistinguishable from
the human form. From
left to right: Keepon
(2003–present),
Wakamaru
(2005–2008), Nao
(2008–present),
ASIMO (2000–2018),
and Kokoro’s Actroid
(2003–present) android.
(Source: Keepon from
Hideki Kozima, Tohoku
University, ASIMO
from Honda)

Figure 4.8), and Pepper, are not bipedal but have arms and have heads with
two eyes.
Nonhumanoid robots, however, may also have anthropomorphic features.

The minimalist robot Keepon (see Figure 4.8, far left) has two eyes and a sym-
metrical body, and it likewise features displays of behavioral cues for attention
and affect that may elicit anthropomorphization. Google’s autonomous car
prototype has an almost cartoon-like appearance, with wide-set headlights
and a button nose that suggest an anthropomorphic appearance. Festerling and
Siraj (2022) also discussed the role of anthropomorphization for digital voice
assistants.
Human-likeness has been key to animation designers for some time, only

relatively recently sparking the interest of social psychologists. Disney’s
Illusion of Life (Thomas et al., 1995) has inspired several social robotic
projects, such as Wistort et al.’s Tofu, which displays the animation princi-
ples of “squash” and “stretch” (Wistort and Breazeal, 2009), and Takayama
et al.’s work with the PR-2 using animation to give the robot apparent
goals, intentions, and appropriate reactions to events (Takayama et al., 2011).
Animation principles such as anticipation and exaggerated interaction have
also been applied to robot design, for example, in Guy Hoffman’s Marimba
player (Hoffman andWeinberg, 2010) and music companion robots (Hoffman
and Vanunu, 2013). Researchers at the Honda Research Institute based the
movement design of their robot Haru (Figure 4.9) on emotive actions acted
out by human performers. These anthropomorphic designs take advantage not
only of appearance and form but also of behavior in relation to the environment
and other actors to evoke ascriptions of human-likeness.

Figure 4.9 Honda
Research Institute’s
Haru robot.

Human-likeness in robot design includes factors related to form and appear-
ance as well as factors relating to behavior; it may also result in the attri-
bution of characteristics (e.g., emotions, intentions, mind perceptions) that
might not be directly observable. The latter is called psychological anthro-
pomorphism (Epley et al., 2007). We cover this topic in greater detail in
Chapter 8.

The uncanny valley
Mori (1970) made a prediction about the relationship between the human-
likeness of robots and their likability (see Figure 4.10). The idea is that the
more humanlike robots become, the more likable they will be, until a point
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Figure 4.10 Mori’s
uncanny valley
theory.

where they are almost indistinguishable from humans, at which point their
likability decreases dramatically. This effect is then amplified by the ability of
the robot to move.
Mori et al. (2012) translated Mori’s original paper into English in col-

laboration with Mori himself. It is important to note that Mori only pro-
posed this idea and never did any empirical work to test it. Moreover,
Mori used the term (shinwa-kan) to describe one of his key con-
cepts. The translation of this concept to English remains challenging—it has
been translated as likability, familiarity, and affinity. Other researchers have
approached the problem by asking participants about the eeriness of the robot
instead.
Unfortunately, Mori’s theory has been used and abused to explain a huge

number of phenomena without proper justification or empirical backup. It is
often used to explain why certain robots are being perceived unfavorably,
without studying the exact relationship between the features of the robot at
hand and its likability. Anthropomorphism is a multidimensional concept,
and reducing it to just one dimension does not model reality adequately.
Moreover, the more humanlike robots become, the greater the risk of getting
a certain aspect of their appearance or behavior wrong and thereby decreasing
the level of likability (Moore, 2012). A simple possible explanation of why
humanlike robots are liked less than, for example, toy robots is that the
difficulty of designing a robot to perform to user expectations increases with
its complexity.
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4.2.2 Designing humanlike appearance
Robot designers may treat humanlike appearance as a characteristic of the
robot itself, whereas social scientists see anthropomorphism as something that
a person attributes to the robot. Considering both of these together suggests
that anthropomorphism is about the relationship between robot design and
functions and people’s perceptions of robots.

Design approaches
To trigger anthropomorphic inferences, robot designers can take into account
the dimensions of robot appearance and behavior, among many other aspects.
By exploiting these aspects, they can achieve an immediate perception of the
robot as more or less humanlike.

Robot appearance Graphical illustration shows us that often, only a few
lines on a sheet of paper are needed to evoke the human form. In the same
manner, anthropomorphism in robots can be very simple: just having two dots
suggesting eyes and a simple nose or mouth is sufficient to suggest the robot
is humanlike. This can be further enhanced by adding more human features,
such as arms or legs, but these do not necessarily do very much to further
increase the anthropomorphization. Although there are many reasons why
robots look increasingly humanlike, anthropomorphization can be achieved
with only a minimal set of humanlike features. Whereas androids mimic
human appearance in most ways, simple robots such as Keepon and R2D2
are already very effective at triggering people to anthropomorphize. Thus, a
large body of research has documented how minimal design cues might be
sufficient to elicit a humanlike perception.

Robot behavior A second approach to increasing anthropomorphization is
to design the behavior of an artifact such that people perceive humanlike
characteristics in its behavior. Heider and Simmel (1944) showed how simple
geometric shapes—triangles and circles—moving against a white background
evoked people to describe their interactions in terms involving social rela-
tionships (e.g., these two are friends; this one is the attacker) and humanlike
feelings and motivations (e.g., anger, fear, jealousy). Animators understand
how motion, rather than form, can be extremely powerful for expressing
emotions and intents. A surprisingly wide range of humanlike expressive
behavior can be communicated through movement alone, without the need
for humanlike form.

The Dot and the Line: A Romance in Lower Mathematics is a 10-minute
animation film by Chuck Jones, based on a short book by Norton Juster.
It tells the story of the amorous adventures of a dot, a line, and a
squiggle. Even though the visuals areminimal, the viewer has no problem
following the story. It is a prime example of howmotion rather than form
can be used to communicate character and intent.
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Robot builders can actively encourage anthropomorphization. One effective
method is to increase the reaction speed of the robot to external events: a
robot that immediately responds to touch or sound will be perceived as more
anthropomorphic. Such reactive behavior, in which the robot responds quickly
to external events, is an easy approach to increase anthropomorphization. The
robot jolting when the door slams shut or looking up when touched on the
head immediately conveys that it is both alive and responsive. Contingency,
responding with behavior that is appropriate for the context of the interaction,
can also be used to enhance anthropomorphization. When a robot detects
motion, for example, it should briefly look toward the origin of the movement.
If the event, such as a tree swaying in the wind, is irrelevant to the robot, it
should look away again, but if it is relevant, such as a human waving hello to
engage the robot in interaction, the robot should sustain its gaze.
Although robot developers will often prefer a combination of both form

and behavior to inspire users to anthropomorphize their robots, certain types
of robots may be limited in how humanlike they can be. Android robots,
which appear virtually identical to people, are still technically limited in their
behavioral repertoire. On the other hand, developers of toy robots are often
under pressure to make the hardware as cheap as possible and thus opt for an
effective combination of simple visual features and reactive behaviors. It is
important to also take people’s expectations into account; the more apparently
humanlike the robot, the more people will expect in terms of humanlike
contingency, dialogue, and other features.

Impact of context, culture, and personality
People’s perceptions of anthropomorphic robot design are often affected by
contextual factors. Some people are more likely than others to anthropomor-
phize things around them, and this can affect how they perceive robots, as pre-
vious research has shown (Waytz et al., 2010). A person’s demographics and
cultural background can also affect their likelihood of anthropomorphizing
or their interpretation of the robot’s social and interactive capabilities (Wang
et al., 2010; Spatola et al., 2022).
The context in which the robot is used, furthermore, can support anthro-

pomorphization. In particular, just putting a robot in a social situation with
humans seems to increase the likelihood that people will anthropomorphize
it. The collaborative industrial Baxter robot, when used in factories alongside
human workers, was regularly anthropomorphized by them (Sauppé and
Mutlu, 2015). Furthermore, it seems that people who work alongside robots
prefer them to be designed in more anthropomorphic ways: people preferred
that Roomba have the ability to display its emotions and intentions with a
doglike tail (Singh and Young, 2012). Workers using Baxter put hats and
other accessories on it and wanted it to be more polite and chitchat with them
(Sauppé and Mutlu, 2015). Workers in a car plant using a co-bot, which was
named Walt and had been designed to have a blend of social features and
features reminiscent of a vintage car (see Figure 11.16), considered the robot
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to be a teammember (El Makrini et al., 2018). Office workers who were given
a break management robot gave it names and requested that it be more socially
interactive (Šabanović et al., 2014).
Seeing other people anthropomorphize robots may suggest that humaniz-

ing nonhuman entities represents socially desirable behavior. To illustrate,
researchers found that older adults in a nursing home were more likely to
engage socially with Paro, the seal-like companion robot, when they saw
others interacting with it like a pet or social companion (Chang and Šabanović,
2015). Clearly, anthropomorphic inferences may emerge instantly upon a first
encounter and likewise become reshaped as a function of long-term interaction
and acquaintance with a technical system. We will discuss this in more detail
in Chapter 8, which covers the psychology of how people perceive robots.

4.3 Design methods

Design in HRI spans a variety of methods inspired by practice from vari-
ous disciplines, from engineering to human–comupter interaction (HCI) and
industrial design. Depending on the method, the starting point and focus of
design may weigh more heavily on technical exploration and development or
on exploring human needs and preferences, but the ultimate goal of design
in HRI is to bring these two domains together to construct a successful HRI
system.

The design process is often cyclical in nature, following this pattern:

1. Define the problem or question.
2. Build the interaction.
3. Test.
4. Analyze.
5. Repeat from step 2 until satisfied (or money and time run out).

4.3.1 Engineering design process
The engineering design method, as the name suggests, is commonly used in
engineering. Starting from a problem definition and a set of requirements,
numerous possible solutions are considered, and a rational decision is made on
which solution best satisfies the requirements. Often, the function of an engi-
neered solution can be modeled and then simulated. These simulations allow
engineers to systematically manipulate all the design parameters and calculate
the resulting properties of the machine. For well-understood machines, it is
even possible to calculate the specific design parameters necessary to meet
the performance requirements. If a new aircraft takes off for its maiden
flight, engineers can be almost certain that it will fly. It is important to note,
however, that they cannot be absolutely certain because the new aircraft
will interact with an environment that is not completely predictable in all
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its detail. Enough is understood, though, to be very sure of the macroscopic
properties of the environment, allowing the engineers to design an aircraft
that crosses the boundary from simulation to actual prototype without any
hiccups. However, validating a solution in simulation is not always possible.
The simulation might not be able to capture the real world in sufficient detail,
or the number of design parameters can be so high that a complete simulation
of all possible designs becomes computationally impossible because it would
take a computer years to calculate how each solution performs. There have
been some attempts at developing human–robot simulators (e.g., Lemaignan
et al., 2014d), but simulating social interaction has turned out to be a very
difficult problem.

Engineers working in HRI tried to design a robot to teach eight- and
nine-year-old children what prime numbers are. They believed that
the children’s learning would benefit from having a very personal and
friendly robot, so they programmed the robot to make eye contact, use the
child’s first name, and politely support the child during the quite taxing
exercises. They compared the friendly robot against a robot in which the
software to maintain engaging relations was switched off, expecting that
robot to be the worse teacher. They were dumbfounded when the aloof
robot turned out to be the better teacher by a large margin, showing how
their preconceptions regarding robot design were firmly out of touch with
the reality of using a robot in the classroom (Kennedy et al., 2015) (see
Figure 4.11).

To make things even more difficult, some design problems can be ill-
defined, or insufficient information is available about the requirements or
the environment. In this case, designers may say that they are dealing with a
“wicked design problem” (Buchanan, 1992), which has changing, incomplete,

Figure 4.11 Boy
learning math with a
robot.
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interdependent, or indeterminate requirements that make it difficult to follow
a linear model of design thinking in which the problem definition can be
cleanly followed by a process of problem solution. HRI design often resembles
such a wicked design problem because there is a lack of information about
the appropriate behaviors and consequences of robots in social contexts.
Another approach to take in this case is to focus not on producing the absolute
best solution but on producing satisficing solutions Simon (1996). Satisficing
is a portmanteau of satisfy and suffice, meaning that the resulting solution
will be just good enough for the purpose it is meant to serve. This is a
common problem-solving approach in all human endeavors, and it is almost
unavoidable in HRI, where technical capabilities may never reach the ultimate
design requirement of the robot performing just as well as or better than
people.

4.3.2 User-centered design process
Relying solely on the engineering design method can guide HRI development
only so far, particularly when the intended uses of HRI are in open-ended inter-
actions and spaces, outside labs or tightly controlled factory environments. In
the process of satisficing, wemay all too often choose not tomeasure the things
that matter but instead only take into account what is easy tomeasure. Oneway
to address this issue is to focus more specifically on the people who will use
the robot and the contexts of use they inhabit throughout the design process.
This can be done through user-centered design (UCD). UCD is not specific to
HRI and is used in many other design domains, such as HCI, and is a broad
term used to describe “design processes in which end users influence how a
design takes shape” (Abras et al., 2004). The users can be involved in many
different ways, including through initial analyses of their needs and desires
that can help to define the design problem, by asking them to comment on
potential robot design variations to see which ones are preferable, and through
evaluations of various design iterations of the robot and of the final product
to evaluate its success among different users and in different use contexts.
Developers are typically confronted with having to make design decisions

for which there are no obvious answers. Do people prefer the robot to have a
red torso or a blue torso? Will a chirpy voice on a retail robot invite more
people into the store? To answer these questions, developers often build
prototypes of the different design options and test them with their target
audience. By taking a human-centered perspective; considering user values,
preferences, and beliefs; and running empirical evaluation studies (seeChapter
10), developers can actually ensure that the preferences or differences that
they observe are not just coincidences but are really caused by the design
feature under consideration. The results then inform the developers in building
the best design option, and the cycle continues with new problems or design
decisions. It is important to run these cycles as early as possible because
the cost of making changes to the system increases dramatically later in the
process. The credo is “test early; test often.”
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Designers often focus mainly on the primary users—those who will mainly
use the technologies. They would, for instance, investigate nurses and patients
who interact with a drug-delivery robot. It is, however, also important for
designers to consider secondary users. These are people who might only inter-
mittently come into contact with the artifact or use it through an intermediary.
Medical staff who see the robot in the hallway would represent an example of
secondary users. Finally, the people who are affected by the use of the artifact
(i.e., the tertiary users) have to be considered. These are people whose jobs
might be replaced or changed as a result of the introduction of new robotic
technology or who might otherwise be affected by the robot’s use even if they
never interact with it. These various people involved in and affected by the
robot’s uses are called stakeholders, and an initial step in the design process
can involve doing some research to identify who the relevant stakeholders
are. Once the stakeholders are identified, the designers can then involve them
in the design process through a variety of user-centered methods, which can
include needs and requirements analyses, field studies and observations, focus
groups, interviews and surveys, and user testing and evaluations of prototypes
or final products (Vredenburg et al., 2002). We will discuss several of these
methods in Chapter 10.

Carnegie Mellon University’s Snackbot was designed through a user-
centered process that involved taking into consideration the robot, peo-
ple, and the context. The design process was iteratively performed over
24 months and involved research on where people could already get
snacks in the building to establish need, initial technology feasibility and
interaction studies, multiple prototypes, and further studies of how the
robot was used and the effects of different forms of dialogue and robot
behaviors on user satisfaction (Lee et al., 2009) (see Figure 4.12).

Figure 4.12
Snackbot (2010), a
system developed at
Carnegie Mellon
University to study
robots in real-world
settings. (Source:
Photo provided by
Jodi Forlizzi)

4.3.3 Participatory design
HRI researchers increasingly use more collaborative and participatory design
approaches. Both collaborative and participatory methods seek to include the
potential users and other stakeholders, or people who might be affected by
robots, in the process of making decisions about appropriate robot design
from early on in the design process. This is clearly distinct from the notion
of bringing users in at the evaluation stage, where the design is partially or
fully formed and users’ input is largely used to test particular factors and
assumptions already expressed in the design. In this way, participatory design
recognizes the expertise people have about their everyday experiences and
circumstances.
Participatory design has been present in the design of other computing

technologies, particularly information systems, since the 1970s, when it was
used to enable workers in organizations to participate in the design of software
and other technologies that they would use in their work later on. Participatory
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design in HRI has been working on developing ways for users to become
engaged in the process of making design decisions about robots—for instance,
by testing and developing particular behaviors for robots, designing robot
applications for their local environments, and conceptualizing how existing
robotic capabilities can potentially address their needs and fit into their
everyday contexts. DiSalvo et al. (2008) performed one of the early participa-
tory design projects in HRI in their “neighborhood networks” project. Here,
community members used a robotic prototype provided by the researchers
to develop environmental sensors for their neighborhood. In another partic-
ipatory project, roboticists and visually impaired community members and
designers worked together in a series of workshops to develop appropriate
guidance behaviors for a mobile PR-2 robot (Feng et al., 2015). Participatory
design has also been used in various healthcare and educational applications
for HRI (see, e.g., Šabanović et al., 2015). Teenagers (Björling et al., 2019)
and even children (Zaga, 2021) have also participated in the design of HRI
through various participatory design methods.
Participatory design is always challenging, but working on participatory

design with robots has its particular difficulties. One is the fact that people
have many different preconceptions about robots but little knowledge about
the technology involved in making them, which leads to unrealistic design
ideas. At the same time, designers have little knowledge of the day-to-day
lives and experiences of people in many of the applications in which HRI is
most needed (e.g., eldercare). While working with older adults and nursing
home staff to develop assistive robots for older adults with depression, Lee
et al. (2017) and Winkle et al. (2018) focused on supporting a process of
mutual learning between HRI researchers and participants, which allowed
both sides to explore and teach each other about their different areas of
expertise. This also helped support participants’ learning to start thinking
about design beyond just designing for themselves. HRI researchers have
also developed frameworks to support the interdisciplinary and participatory
design of social robots (Axelsson et al., 2021). Participatory design is still
new in HRI, but with more and more applications being envisioned for diverse
populations and everyday contexts, it is becoming an increasingly important
component of the HRI design methods toolkit.

4.4 Prototyping tools

Although it is possible to develop simple robot prototypes from materials
that are generally available, such as cardboard or found objects, several
prototyping kits and tools for creative interactive technologies have recently
become available on the market. These make it possible for a wide variety
of people with different levels of technical expertise and economic resources
to try their hand at robot design. They also enable more rapid and iterative
development of robot designs by making the representation of interaction a
simpler thing to create.
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Figure 4.13 LEGO
Mindstorms
(1998–2022) was
the brainchild of
Seymour Papert, a
Massachusetts
Institute of
Technology
professor who was
an avid proponent
of using computers
to support child
learning.

Perhaps the earliest type of kit that could be used for developing different
robot designs was the first-generation LEGO Mindstorms system (see Figure
4.13), which provided bricks for building and specialized bricks for program-
ming and actuating simple robot prototypes. Bartneck and Hu (2004) used
LEGO robots to illustrate the utility of rapid prototyping for HRI, and the first
case studies had already appeared in 2002 (Klassner, 2002).
The Vex Robotics Design System1 is also widely known and used, and

its advanced version is the kit of choice for the popular FIRST Robotics
Competitions.2 More recent additions to the array of kits available are Little
Bits, which provide easy-to-use plug-and-play electronic bricks, including
sensors and actuators, among others, that can be used to quickly and easily
create interactive prototypes.
The Arduino microcontroller3 is very affordable and has a large hobbyist

community providing open-source designs and code, as well as a wide array
of peripherals (sensors, motors, LEDs, wireless units, etc.) that allow for more
flexibility in design but require more technical know-how.
Other equipment, such as the Raspberry Pi4 single-board computer and

affordable and even portable three-dimensional (3D) printers, can not only
make HRI prototyping easier but also may even be said to be making it
accessible to the masses (or at least to college students).
Designers also incorporate other existing technologies into robot design,

including smartphones. Even an average smartphone these days has sufficient
computing power to control a robot. Furthermore, a smartphone has many

1 See www.vexrobotics.com
2 See www.firstinspires.org/
3 See www.arduino.cc
4 See www.raspberrypi.org
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built-in sensors (microphone, camera, gyro sensor, accelerometer) and actua-
tors (screen, speaker, vibration motor). The RobovieMR2 is an early example
of integrating a smartphone into a robot to control all of its functions (see
Figure 4.14). Hoffman calls this the “dumb robot, smartphone” approach to
social robot design (Hoffman, 2012).

Figure 4.14
Robovie MR2
(2010) is a
humanoid robot
controlled through a
cell phone.

Available technologies for prototyping continue to develop, fueled at least
in part by ongoing efforts to engage more students, hobbyists, and even
potential users in technology design.

4.5 Culture in HRI design

As not only an interdisciplinary but also an international field of research,
HRI design has been particularly interested in the question of cultural effects
on perceptions of and interactions with robots. Culture, the different beliefs,
values, practices, language, and traditions of a group of people, plays into
robot design both in the form of factors introduced by designers and in the
context in which users interpret different HRI designs.
Researchers commonly make connections between cultural traditions and

the design and use of robots, particularly contrasting the norms, values, and
beliefs in the East and West: animist beliefs have been used to explain the
perceived comfort of Japanese and Korean populations with robots (Geraci,
2006; Kaplan, 2004; Kitano, 2006), whereas human exceptionalism has been
suggested as a source of Westerners’ discomfort with social and humanoid
robots (Geraci, 2006; Brooks, 2003). Holistic and dualistic notions of mind
and body (Kaplan, 2004; Shaw-Garlock, 2009) and individualist and com-
munitarian social practices (Šabanović, 2010) have been identified as design
patterns represented in the design of robots and potential human interactions
with them.

Figure 4.15 The
BlessU2 robot was
used by the
Protestant church in
Germany to give
blessings.

In addition to these generalized connections between culture and robotics,
HRI researchers have been studying cultural differences in and effects on
people’s perceptions of and face-to-face encounters with robots. In a compari-
son using Dutch, Chinese, German, U.S., Japanese, and Mexican participants,
it was found that U.S. participants were the least negative toward robots,
whereas the Mexican participants were the most negative. Against expecta-
tions, the Japanese participants did not have a particularly positive attitude
toward robots (Bartneck et al., 2005). MacDorman et al. (2009) showed that
U.S. and Japanese participants have similar attitudes toward robots, suggesting
that such factors as history and religion (see Figure 4.15) may affect their
willingness to adopt robotic technologies. Survey evaluations of the seal-like
robot Paro by participants from Japan, the United Kingdom, Sweden, Italy,
South Korea, Brunei, and the United States found that participants generally
evaluated the robot positively but identified different traits as most likable
according to their country of origin (Shibata et al., 2009).
In the context of human–robot teamwork, Evers et al. (2008) found that

users fromChina and the United States responded differently to robots and that
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human teammembers found robots more persuasive when they used culturally
appropriate forms of communication (Lindblom and Ziemke, 2003). Findings
from two generative design studies with participants in the United States and
South Korea, which asked users to think about robotic technology in their own
homes, showed that user expectations of and needs for robotic technologies
are related to culturally variable conceptions of the home as relation oriented
in Korea and more functionally defined in the United States (Lee et al., 2012).
The growing body of work on cross-cultural differences in HRI and their
potential design implications identifies that cultural considerations should
be taken into account when designing robots, both for international and
local uses.

4.6 From machines to people—and the in between

As the previous discussion shows, designing human–robot interactions
involves making many decisions about the form, function, and desired
effects of robots. HRI designers, however, also bring deeper philosophical,
ethical, and even political commitments into their work. Although these can
be unconsciously brought into HRI research, we think it is useful for HRI
scholars to consciously engage with these concerns in the course of their
robotics research and development.
One of the most basic decisions that robotics researchers make is the type

of robot they want to work on—is it meant to resemble a human or be more
like a machine? Another decision can involve the main goals of the work—
is it focused on producing technical developments, understanding humans, or
perhaps developing HRI systems that can be used for specific applications
and contexts of use? These decisions have significance beyond just the design
and use of the robot, however. One could argue that the creation of robots by
their designers, in particular those in which robotic copies of actual people are
created, is an immortality project. Such projects are “symbolic belief systems
that promise that the individual will not be obliterated by the demise of his
or her physical body” (Kaptelinin, 2018, p.6). Hiroshi Ishiguro’s work on
android copies of living human persons is a case in point, in which the robotic
copy can aim to stand in the place of that specific person, both in current
and ostensibly future interactions. Ishiguro himself describes how he feels his
own identity is interconnected with the robot, which persists as a replica of his
past and younger self that he now feels the pressure to emulate (Mar, 2017).
But the relationship between machinelike robots and designers can be just as
deep. Describing his work with industrial robots, Japanese roboticist Masahiro
Mori defined the relationship between humans and machines as being “fused
together in an interlocking entity” (Mori, 1982). This close relationship has
direct consequences for the form and function of the robot on the one side and
the designer on the other side, as well as on the future consequences and uses
of the robot in society.
Robot design can also be guided by a personal commitment to specific

social and philosophical values, such as improving access to resources for
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broader populations, increasing participation in the design of and decision-
making about robots, or contributing to the solution of pressing social issues.
Roboticist Illah Nourbakhsh described how his personal values affect his
robotic projects as follows:

One way out is to say my work is purely theoretical, who cares how
somebody applies it? I didn’t want to do that. I wanted to say my work
involves theoretical components, but I’m taking it all the way to seeing a
real result in the physical world. And furthermore, I want it to be socially
positive in some measure. ⋯ I want to work on something so socially
positive that not only do I hope everyone uses it, but I want to see at least
one used case to fruition. Then you have this feedback loop from real-
world application back to engineering design. (Šabanović, 2007, p. 79)

In this way, the choice of what type of HRI project to pursue and the goals
to focus on in design can reflect personal or collective values (e.g., of the
research group or of project collaborators).
Relatedly, it is not only researchers’ values that matter, but likewise, a

human-centered approach should take into account user and organization
values, for example, in the framework of value-sensitive design (VSD)
(Friedman et al., 2002). Indeed, although VSD represents an established
method to advance novel technologies, it has rarely been used in the context
of social robots. As a research method for social HRI, VSD can help integrate
user perspectives in a literally valuable way (see also Schmiedel et al., 2022).

Figure 4.16 Robert
M. Pirsig
(September 6,
1928–April 24,
2017) is the author
of The Metaphysics
of Quality, which
has inspired many
designers.

These authors point out that within the VSD framework, technologies adapt
to human needs rather than vice versa. By means of VSD, human values can
be translated into technological requirements, thereby ensuring that user or
stakeholder perspectives are integrated at the onset of technology development
by means of value identification, value embedding, and value evaluation.

One of the authors finds inspiration for his design in the work of Robert
M. Pirsig (see Figure 4.16), who put it this way:

The real [aesthetics] lies in the relationship between the people who
produce the technology and the things they produce, which results
in a similar relationship between the people who use the technology
and the things they use. (Pirsig, 1974, p. 299)

Pirsig emphasizes the crucial role of obtaining peace of mind in order
to arrive at good design as the barrier between the designer and the object
to be designed dissolves:

So the thing to do when working on a motorcycle, as in any other
task, is to cultivate the peace of mind which does not separate one’s
self from one’s surroundings. When that is done successfully then
everything else follows naturally. Peace of mind produces right
values, right values produce right thoughts. Right thoughts produce
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right actions and right actions produce workwhich will be amaterial
reflection for others to see of the serenity at the centre of it all.
(p. 305)

The connection between the robot and its designer is far deeper than
youmay assume. Pirsig spent his whole life working out TheMetaphysics
of Quality, in which he argues that there is no fundamental difference
between the designer and the object he or she designs. What connects
them is “quality.”
Considering the peace of mind of the designer might sound strange at

first, but Pirsig argued that in the moment of the perception of quality,
there is no division of objects and subjects. In the moment of such pure
quality, the subject and the object are one (Pirsig, 1974, p. 299). Artists
might be familiar with the experience of unity with their work, and the
work of designers and engineers might be enhanced if they, too, would
be more sensitive to this connection.

4.7 Conclusion

Designing robots requires multidisciplinary expertise, often by means of a
team, and a process that takes the users and the interaction context into consid-
eration. Various prototyping tools are available to quickly build and test robots.
Once the users and their interactions with the robot are understood, the robot
needs to be designed from the outside in—starting with the potential users and
use context to develop design concepts and the technical specifications for the
robot. HRI designs also express, whether consciously or unconsciously, the
social and ethical values of the designers.
The robots’ anthropomorphism is one of the most important design con-

siderations in contemporary HRI. We provided a detailed description of
the construct of psychological anthropomorphism as a prime opportunity
for a fruitful exchange between disciplines, leading to a broader overall
understanding of the concept in the social sciences and robotics. Beyond the
theoretical and methodological gains from investigating anthropomorphism,
HRI studies have also shown the importance of considering humanlike form
and function in robot design for perceived interaction quality, HRI acceptance,
and enjoyment of the interaction with humanlike robots.

Questions for you to think about:

• Think about the features of a humanlike robot in terms of “design
affordances.” Which affordances should be considered in humanlike
robots?

• Try to think about “design patterns” for social robots that greet people
daily. Find and describe repeatedly reused patterns in behavior.

• Imagine you have to design a robot. Consider the necessary steps,
taking a participatory design approach.

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



80 Design

• Discuss the role of user expectations in robot design. What are impor-
tant points to consider if you want to market your robot?

• What is your opinion: Should a social robot have very few humanlike
cues, or should it be highly anthropomorphic in design (e.g., like an
android)? Which robot would be accepted more by people in general?
Why?

• Think about a robot that you might want to have in the near future.
Picturing this robot, try to think about a way to encourage more
anthropomorphization based on its behavior. Which behaviors should
the robot show to be perceived as humanlike?

4.8 Exercises

The answers to these questions are available in the Appendix.

* Exercise 4.1 Pareidolia Take photographs of pareidolia in your environ-
ment. Do not just google images. Use your phone or camera. Why did you
choose these images?
* Exercise 4.2 Anthropomorphism Have a look at Figure 4.17. Sort the
robots from low to high anthropomorphism.

Lowest anthropomorphism:1.
Low anthropomorphism:2.
Medium anthropomorphism:3.
High anthropomorphism:4.
Highest anthropomorphism:5.

Figure 4.17 Different
robots. (Source: B,
Honda; C, Copyright of
Sony Corporation)
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*** Exercise 4.3 Design an autonomous vehicle Watch this video, and then
answer the question that follows.

• Dr. Leila Takayama, “What Is It Like to Be a Robot?” https://youtu.be/
bFRBpVhqrxo

If you were designing an automated self-driving car, like the ones devel-
oped by Google or Tesla, what kinds of affordances and/or design patterns
would you include in the design to make people be and feel safe in the car
as passengers and allow pedestrians and other drivers on the road to be able
to trust the car in traffic? You can refer to Chapter 1 and this chapter, as well
as Leila Takayama’s talk (linked in the previous exercise), which discusses
the sense of control in autonomous systems and some car examples, among
other things, to justify your design decisions.

1.

Future reading:

• Duffy, Brian R. Anthropomorphism and the social robot. Robotics and
Autonomous Systems, 42(3):177–190, 2003. ISSN 0921-8890. doi:
10.1016/S0921-8890(02)00374-3. URL https://doi.org/10.1016/S092
1-8890(02)00374-3

• Fink, Julia. Anthropomorphism and human likeness in the design
of robots and human-robot interaction. In Ge, Shuzhi Sam, Khatib,
Oussama, Cabibihan, John-John, Simmons, Reid, andWilliams,Mary-
Anne, editors, Social Robotics, pages 199–208. Springer, Berlin, 2012.
ISBN 978-3-642-34103-8. URL https://doi.org/10.1007/978-3-642-3
4103-8_20

• Kahn, Peter H., Freier, Nathan G., Kanda, Takayuki, Ishiguro, Hiroshi,
Ruckert, Jolina H., Severson, Rachel L., and Kane, Shaun K. Design
patterns for sociality in human-robot interaction. In The 3rd
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5

Spatial Interaction

What is covered in this chapter:

• The importance of the spatial placement of agents in social interaction.
• Basic understanding of human proxemics: how people manage space
in relation to others.

• How a robot manages the space around it, including interactions
such as approaching, initiating interaction, maintaining distance, and
navigating around people.

• How the properties of spatial interaction can be used as cues for robots.

In 2012, Exertion Games Labs released a drone exercise companion called
Joggobot (see Figure 5.1). Runners who feel like they could use a little extra
motivation or companionship during their run but don’t have a personal trainer
or a friend to join them can now have a drone accompany them during their
exercise laps. One of the critical features of Joggobot is its placement in space
during the run: right in front of the runner, like a carrot tempting a running
horse. This position wasn’t chosen on a whim. The developers studied where
the drone should ideally be in relation to the runner (i.e., above, following,
leading, on the side) and how much distance it should keep in order to
maximize motivation (Graether and Mueller, 2012). They found that having
the drone flying behind the jogger made people feel like they were being
chased, which decreased their enjoyment of exercising. Users much preferred
to take on the chasing role themselves. This shows that the spatial placement
of a robot with respect to its user is an important aspect to consider in human–
robot interaction (HRI).

Figure 5.1 The
Joggobot Drone
(2012). (Source:
Photo provided by
Eberhard Gräther
and Florian “Floyd”
Mueller)

Consumer drones, such as the readily available and cheap quadrotor plat-
forms, have become ubiquitous since the Joggobot was developed. Baytas
et al. (2019) reviewed the use of drones in social environments, where they
fly in close proximity to people and even interact with users, with drones even
acting as a teacher in the classroom (Johal et al., 2022). As you can imagine,
distance matters in such cases, and proxemics in human–drone interaction is
now an active research field (Yeh et al., 2017; Han et al., 2019;Wojciechowska
et al., 2019).
Thus, when planning a robot’s placement in space, it is crucial to consider

people’s preferences and the social norms that exist regarding such placement
in relation to others. This chapter covers the spatial component of HRI.
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5.1 Use of space in human interaction 83

Section 5.1 explains the tendencies that humans display with regard to space
when they are in a social setting with other humans; Section 5.2 discusses
to what extent these social norms and unspoken rules extrapolate to a social
setting that includes robots.

5.1 Use of space in human interaction

When space is available, individuals are strongly expected to adhere to social
distance norms. Most people feel it is inappropriate for a stranger to sit
beside them on an otherwise empty bus. However, when taking the bus during
rush hour, we are forced to step into others’ personal space, and it becomes
acceptable to sit or stand close to others. Even though it is not considered
impolite to stand next to someone on a busy commute, people often feel
uncomfortable, avoiding eye contact and quickly repositioning themselves at
a greater distance when more space becomes available (see Figure 5.2).

5.1.1 Proxemics
Cultural anthropologists coined the term proxemics to describe how people
take up space in relation to others and how spatial positioning influences
attitudes, behaviors, and interpersonal interaction. Hall et al. (1968) describe
four distance zones in their original work: intimate distance, personal distance,
social distance, and public distance (see Figure 5.3). When the available space
is (relatively) unlimited, these distances indicate the psychological closeness
between people.

Figure 5.2
Commuters during
rush hour on the
Tokyo subway
having their
personal space
violated. We often
deal with this by
avoiding the gaze of
others.

As the name suggests, intimate distance is reserved for close personal
relationships or the sharing of private information. Intimate distance ranges
roughly from a few centimeters to about half a meter, depending on one’s
age and culture. Together with personal distance (which ranges from about
half a meter to 1.2 meters), these zones make up the personal space of a
person: the amount of space that people generally consider theirs to take up.

Figure 5.3
Intimate, personal,
social, and public
distance, according
to Hall et al. (1968).
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84 Spatial Interaction

Under normal circumstances, only friends, relatives, and partners are expected
to come this close. For less personal relationships, such as acquaintances
or colleagues, one is expected to maintain social distance, which ranges
between 1.2 and about 4 meters between persons. Finally, public distance
starts at around 4 meters, which is the distance people are expected to keep
between them in relatively impersonal settings, such as public speaking at a
conference.
Hall et al. (1968) consider people’s use of space as an often-overlooked

dimension of cultural experience and note that people from different cultures
have varying personal proxemic preferences and expectations. For example,
in “high-contact cultures,” such as those of South America, people will
frequently enter each other’s personal space and touch, whereas in “low-
contact cultures,” such as the United States, touching a stranger may be
construed as assault. Hall wittily observe that North Americans visiting South
America will find themselves “barricading themselves behind their desks,
using chairs and typewriter tables to keep the Latin American at what is to
us a comfortable distance.” (Hall, 1990, p.180)
Slight breaches of proxemic norms are sometimes made on purpose by

individuals, for instance, to create more psychological closeness or perhaps
to intimidate. For example, a man who nonchalantly places his arm first on
the backrest of the sofa where his date is sitting and then cautiously inches
closer and closer is making a transition from personal distance to the intimate
zone. The friend who touches your arm when you are telling a personal story
does the same, although with a different underlying motive. However, these
moves have to be made very cautiously and under continuous assessment and
reassessment of the reaction of the other person. Few peoplewould be charmed
if a hopeful suitor had abruptly placed themselves right on their lap at the start
of a date. Likewise, when we attempt to comfort a colleague by giving a hug
at the wrong moment, the interaction can turn awkward rather quickly. This
is because the meaning of spatial-interaction cues is highly contextual. Unlike
the friendly moves just mentioned, an investigator questioning a suspect may
“get in the suspect’s face” by moving as close to the suspect as possible to
seem more threatening.
Not only the distance at which we interact with each other but also our

placement in relation to interaction partners are bound by social norms. For
example, researchers found that people who sat next to each other were
more cooperative, whereas people sitting opposite each other behaved more
competitively. During conversations, people usually position themselves at an
angle to each other (Cook, 1970). The way in which people place themselves
with respect to each other is therefore an important aspect of the dynamics of
interaction (Williams and Bargh, 2008).
Finally, circumstances beyond our control can have a profound impact

on proxemics. The COVID-19 pandemic, which raged across the globe in
2020, forced us all to adopt social distancing. Social distances that previously
seemed fine suddenlymade us all feel very uncomfortable. Authorities insisted
that we keep a minimum distance of 1.5 meters (or 6 feet) from people who
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5.1 Use of space in human interaction 85

were not part of our household, and people instinctively started avoiding
crowds and adopted very different proxemics (Mehta, 2020). Time will tell
if the two years during which we were forced to alter proxemics will have
a lasting effect on the social distances we keep or if the realities of crowded
metros and old habits will force us back into our old ways.

5.1.2 Group spatial-interaction dynamics
The importance of spatial dynamics goes beyond one-on-one interaction and
is also salient in group interaction scenarios. The spatial orientation of people
in a group in relation to others can make the group seem as if it were inviting
more members or seeking to keep others out. For example, at a cocktail party,
when people stand in a tight-knit circle, it can seem difficult to join in the
conversation. However, if the group notices people wanting to join and opens
up the circle so that there is space for new members to fill, it can be construed
as an invitation to participate. This type of information can be useful for robots
to gauge which groups of people they can approach in public spaces like muse-
ums or malls or if they want to join the interaction dynamics of human groups.
Group spatial dynamics such as these were described by Adam Kendon

as the “facing formation,” or “F-formation” ... defined as “one to which
they have equal, direct, and exclusive access” (Kendon, 1990, p. 209) (see
Figure 5.4). These formations are created through the positioning of two
or more people in relation to each other, such that the areas of space that
they are facing and on which they focus their attention are overlapping. The
inner space between these people is termed the o-space(Kendon, 1990). The
group participants themselves are said to occupy the p-space, and they are
surrounded by r-space. People can modify their positions to maintain this
space or to include other participants in the group conversation, as in the
previous example. Different configurations of the F-formation are possible,
based on people’s orientation to each other, and are termed the face-to-face, L-
shape, and side-by-side formations for two people and the circular formation
and other shapes for larger groups.
These group formations have been used to understand people’s interac-

tions with technology (Marshall et al., 2011) in general and with robots
more specifically (e.g., Hüttenrauch et al., 2006; Yamaoka et al., 2010).

r-space

p-space

o-space

a) b) c) d)

Figure 5.4
Kendon’s (1990)
F-formations come
in several variants,
all of which include
the components of
o-, p-, and r-space,
namely: the (a)
face-to-face, (b)
L-shape, (c)
side-by-side, and (d)
circular formations.
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In navigation around people, Pérez-Hurtado et al. (2016) found that a robot
needs to be aware of people’s movements and cognizant of people engaged in
conversation and not walk between them even if there is enough space.

5.2 Spatial interaction for robots

Robots will often share physical space with humans. Some robots are mobile,
moving over the ground or through the air. Some of them have arms and
manipulators so that they can interact with objects and users. The placement
and movement of such robots with respect to people must be considered
when designing human–robot interactions. Robots that do not respect the
personal space of the user will evoke negative reactions or even rejection and
withdrawal by the user. Robot designers can attempt to increase acceptance
of the robot by having it keep an appropriate distance (assuming that they can
code the robot in such a way that it knows what the “appropriate distance”
is at a given point in time and space) and adjusting its position to create a
fitting interaction experience. For example, a security robot might initially
keep a polite distance but enter a person’s intimate space at some point in the
interaction in an attempt to intimidate the person.

5.2.1 Social navigation
Before going intoHRI, let us briefly explain the basic techniques from robotics
that are required for a robot in order to engage in spatial interactions with
humans. When a robot wants to interact with people, it needs to locate itself
in space with regard to the people it aims to interact with. Thus, one of the
basic techniques required for mobile robots is localization; a robot needs to
know where it is. This is not a trivial problem. A typical robot is equipped
with an odometer, a sensor that records the distance traveled by the robot’s
wheels. However, as the robot travels, these measurements lose accuracy, and
the robot therefore needs to correct the information that the odometry provides
about its location. The typical solution to this is to let the robot build a map
of its environment and then cross-reference information on its location and
orientation from the odometry with information from other sensors, such as
a laser range finder or camera, to locate itself on the map. This process is
known as simultaneous localization and mapping, or SLAM (Davison et al.,
2007; Thrun et al., 2005).
In addition to reporting the robot’s location, localization can help the robot

know what type of space it is in (e.g., whether it is in the living room or
bathroom). However, it will not reveal anything about the whereabouts of
any people in that space. Identifying the location and orientation of people
interacting with the robot thus is the next challenge. For detecting people at a
short range, the robot will carry sensors, such as two-dimensional (2D) cam-
eras and depth cameras, that enable it to identify nearby people. The software
processing the camera images can not only detect and track humans but also
report on the location of body parts such as arms, legs, and heads. For tracking

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



5.2 Spatial interaction for robots 87

people at longer distances, there are techniques that use laser range finders
(also known as light detection and ranging, or LiDAR). A motion-capturing
system is sometimes used. By placing reflective or fiducial markers on people
and objects, motion capture can be used to identify and locate the markers (and
by extension, the people or objects they were initially attached to). However,
these marker-based approaches are difficult to use outside a lab setting: good
luck convincing customers to stick markers on themselves to allow their home
robot to recognize them. Finally, researchers can also mount sensors, such as
cameras, in the environment to track people (Brscić et al., 2013). (For more
details on the different sensors that a robot can be equipped with, see Section
3.4 in Chapter 3.)
Moving the robot through a crowded environment, also known as robot

navigation, is a well-studied problem in mobile robotics. To avoid collisions
between the robot and objects or people, techniques such as the dynamic
window approach (DWA) are often used (Fox et al., 1997). The idea behind
this technique is that a system computes its future location based on the current
velocity of the robot while at the same time considering whether to keep or
alter its velocity within the limitation of its actuation capability—and while
calculating a future velocity that does not result in a collision. Over longer
time scales, there are techniques based on path planning. In these techniques,
if a given goal of a robot is not within immediate view of the robot, a path-
planning algorithm computes a set of way points or paths for the robot that will
let it reach its goal. In robotics, most path-planning algorithms that work well
for navigating around obstacles will result in socially inappropriate behavior
when tried around people. We will discuss the social rules around positioning
shortly.
Localization and navigation can also take various elements of interaction

with a user into account. For instance, Spexard et al. (2006) developed a
robotic mapping technique that uses input from dialogue with users to learn
about new places in an environment. To develop a human-friendly mapping
technique, Morales Saiki et al. (2011) had a robot explore the environment
while collecting visual landmarks to build a cognitive map from a humanlike
perspective; this enabled the robot to generate route instructions that people
could easily comprehend. Researchers have also worked toward developing
techniques to understand human spatial descriptions, such as route directions.
For instance, Kollar et al. (2010) developed a technique to associate a user’s
instructions and visual information about the environment to help the robot
interpret the location mentioned by a user. Zhou et al. (2022) first measured
how people pass one another in social settings, then implemented navigation
behavior for a Pepper robot, showing that people felt more at ease near a robot
with socially aware navigation.

5.2.2 Socially appropriate positioning
Even though there are basic techniques for perception and navigation that
allow robots to move around without colliding with obstacles, robots still
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88 Spatial Interaction

often lack the capabilities to navigate in a socially appropriate way in the
presence of other people. Suppose we want a robot to move through a corridor
in an office building. What would happen if it considers people as obstacles?
When a person walked toward the robot from the other end of the corridor, the
robot would continue to move straight down the corridor until inches before
colliding, then move out of the way. Although it would avoid a collision with
the person, this behavior is very different from what humans would do in a
similar situation: we yield to each other well in time, nonverbally showing
which side of the corridor wewill walk on, andwill avoid entering each other’s
personal space. Thus, a robot waiting until the last moment before moving out
of the way may be seen as confrontational or aggressive, even though it still
avoids running into a person.
Most mapping techniques for robots only provide geometrical maps, where

people are considered obstacles. They do not contain information on which
direction people are facing, if they are having a conversation or just standing
close to each other, or how people are moving. Hence, there are several
techniques that allow a robot to acquire a more human-aware representation
of its environment.
One of the focuses in investigating proxemics in HRI has been identifying

appropriate interaction distances between users and robots (see Figure 5.5).
These include questions like the following: How close do people prefer to
stand relative to a robot? How close should a robot approach people before
it is considered rude or inappropriate or makes people feel uncomfortable?
Walters et al. (2005) measured the distance at which people feel comfortable
when they are approached by a robot. They reported that themajority of people
prefer a personal or social distance when interacting with a robot, although
some people prefer to stand even closer. Hüttenrauch et al. (2006) reported
that people preferred the robot to stand at distances derived from human
proxemics. Investigating interactions between a robot and a group of people,

Figure 5.5 A lab setup
for proxemics study of
HRI.
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5.2 Spatial interaction for robots 89

Kuzuoka et al. (2010) reported that a robot can change the conversational
F-formations of the group by changing its body orientation, and they also
found that movement of the robot’s whole body was more effective than
having the robot move only its head.
Relational position is also important when people and robots interact while

they are moving. To enhance a robot’s social acceptability, techniques have
been developed for robot navigation based on human proxemics. For instance,
when a robot follows a user from behind, the robot can either follow the same
trajectory as the user, or it can move directly to the user’s current location,
whichmight be a shorter and faster pathway. Gockley et al. (2007) showed that
users perceive the first behavior as more natural. Morales Saiki et al. (2012)
developed a technique that allows a robot to navigate side by side with its user,
for which they found it important for the robot to anticipate the user’s future
motion.
Furthermore, people’s perceived safety does not necessarily correspond to

what a robot computes to be safe. For instance, in the corridor passing problem,
it was found that a robot needs to maintain enough distance to avoid entering
a person’s intimate zone (Pacchierotti et al., 2006). Alternatively, a robot
can mimic how people avoid colliding with each other. Luber et al. (2012)
and Shiomi et al. (2014), for example, developed a pedestrian model that
implemented collision avoidance for dynamic environments. Considerations
of comfort and perceived safety can also be integrated into path planning.
Sisbot et al. (2007) developed a path planner for a mobile robot that plans
how to reach a given goal while avoiding situations that might make people
uncomfortable. The planner takes into account aspects such as whether people
are sitting or standing and whether the robot might surprise them by suddenly
appearing from behind an obstacle. Fisac et al. (2018) used a probabilistic
model of a human walking to plan and execute a safe trajectory for an indoor
drone (see Figure 5.6).
Planning a motion path that people will perceive as safe and comfortable is

also necessary when only a part of the robot enters the user’s personal space.
For example, when a robot arm is used near a person, such as when a person

Figure 5.6 The
drone calculates a
probabilistic model
of where the human
will go and plans a
safe route to avoid
collision. (Source:
Illustration by Jaime
Fernández Fisac,
Andrea Bajcsy,
Sylvia L. Herbert,
and David
Fridovich-Keil,
depicting their work
in Fisac et al.
(2018))
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90 Spatial Interaction

and an industrial robot collaborate on a shared task, the robot must take the
socially appropriate distance into account when computing a path for its end
effector (e.g., hand) to reach its given goal (e.g., grasp an object or hand
an object to a person) (Kulic and Croft, 2005). This may make the robot’s
movement inefficient from a purely functional standpoint, but it will lead to a
more positive evaluation of the interaction by the user (Cakmak et al., 2011).

5.2.3 Spatial dynamics of initiating HRI
Every social interaction has to be initiated by someone, perhaps by hovering in
the vicinity of the person you want to talk to at a cocktail party while orienting
your body toward the person, for example, or by approaching a colleague
to hand over the annual report. How you approach each other and how the
approach is perceived have implications for the ensuing interaction.
Approaching behavior is generally expected to have positive effects on

both parties in the interaction. The approacher makes an effort to attract and
share attention, which signals interest in the person being approached. At the
same time, initiating an interaction triggers neural activity in reward-related
brain areas, resulting in positive affect in the initiator (Schilbach et al., 2010).
Initiating interaction is, furthermore, a sign of being assertive and having faith
in one’s capability to conduct a successful social encounter.What may bemore
surprising is that this runs the other way, too. People who approach others are
seen by their peers as having more personal control (Kirmeyer and Lin, 1987).
Imagine the moment when a person meets a robot for the first time. Either

of them could approach the other to initiate the interaction. Whereas this
can be rather trivial for a person, a robot needs to be carefully designed
to appropriately initiate an interaction. Approaching behavior for robots has
been studied from early on in the field of HRI. For instance, in a situation
where a robot joins a queue, the robot needs to respect the personal space of
other people who are also waiting (Nakauchi and Simmons, 2002). When a
robot encounters people, it needs to switch its navigation mode from purely
functional to considering social distance and spatial configuration (Althaus
et al., 2004).
Initiating an interaction is also context and task dependent. Satake et al.

(2009) show how a robot offering information about the stores in a mall will
fail to initiate an interaction if the approach is poorly planned and executed.
The planned trajectory needs to be both effective and acceptable to human
visitors (Satake et al., 2009; Kato et al., 2015). Whereas approaching from the
front was found to be desiredwhen a robot was trying to initiate a conversation,
approaching from the front when the robot was delivering an object to a person
was less preferred and resulted in more failures (Dautenhahn et al., 2006; Shi
et al., 2013).
Some recent work incorporates machine learning to generate appropriate

approaching behaviors that fit with a context. Liu et al. (2016) designed
approaching and initiating behavior for a store clerk robot using a fully auto-
mated analysis of observed human behavior. The researchers first recorded
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5.2 Spatial interaction for robots 91

how people moved and talked in a camera store scenario and then used
machine learning to extract typical speech behavior and spatial formations.
These behaviors were then transferred to the robot. A user study showed
that the learned speech and motion behavior was considered to be socially
appropriate by users.
Even in the case where a person approaches a robot, the robot should

respond at just the right moment. If it fails to do so, the user could find
the interaction unnatural and awkward and might even give up initiating
interactions in the future (Kato et al., 2015). Human proxemics studies,
particularly observational studies on the interactions of humans with either
one another or with robots, can providemore contextually attuned and relevant
models. For instance, Michalowski et al. (2006) developed a categorical
model of human spatial interaction and engagement with a receptionist robot
from observations of people’s interactions with the robot. They defined the
appropriate timing and types of behavior (e.g., turning toward a person, saying
hello) that the robot could perform with people in different spatial zones in
order to both be perceived as more approachable and successfully initiate an
interaction when appropriate.
Social navigation has become particularly relevant in the context of self-

driving cars. The story goes that the first self-driving cars at Google drove
optimal trajectories following the highway code, but they frequently startled
other road users by driving too close or cutting them off. Only when politeness
was explicitly added as an optimization criterion did the cars drive in a way
that was socially acceptable.

5.2.4 Informing users of a robot’s intent
Robot motion trajectories are often used to convey the intent and goal of the
robot. Path-planning algorithms have been developed to explicitly convey
information through the robot’s trajectory. For instance, by slowly passing
a few meters from a visitor, a mobile robot is able to express whether it is
available for an interaction (Hayashi et al., 2012). Similarly, trajectories have
been used as a means to allow a robot with few options to express itself, such
as cleaning robots and drones, to communicate their intent to users (Szafir
et al., 2015).
During handover in HRI, that is, when a robot hands an object to its user,

users prefer a robot to behave with “legibility”—in a way that allows users to
understand its goal and intention (Koay et al., 2007a). Hence, researchers have
developed algorithms to control a robot arm to generate legible motions while
reaching a given goal. A robot could hand over an object to a person in many
different ways, but the most energy-efficient way may be incomprehensible to
a person, so it is better to perform a motion that is easier to interpret (Dragan
et al., 2013).
When a robot works closely with a person, it needs to have the capability

to understand how the person is perceiving the space around him or her. An
important related capability is spatial perspective-taking (Trafton et al., 2005).
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92 Spatial Interaction

Imagine a situation where two people are working together. One might ask
the other to pass an object by saying, “Give me that object.” The referent of
“object” will be obvious if there is only one object available. But what if there
are several objects? For people, inferring the intended referent of “object” is
often easy. We may use a complex set of cues, including gaze direction, body
orientation, the prior context of the interaction, knowledge about the person
and his or her preferences, task information, and other cues, to disambiguate
the request. For a robot, however, this can be rather complicated. Several
approaches exist that allow the robot to take the perspective of the user. These
often rely on geometric models that keep track of the location of people,
robots, and objects and which of these are visible and reachable by whom
(Lemaignan et al., 2017; Ros et al., 2010).

5.3 Conclusion

The study of spatial interaction in HRI is often inspired by our understanding
of human proxemics, conversational relations, and relational positioning and
approach behaviors, although we cannot expect the effects to always be the
same. However, norms and understandings that are common knowledge for
people—to the point where they may not even be aware of them anymore—
often turn out to be not so trivial to incorporate into robot behavior. For
instance, people will unconsciously and effortlessly adjust the distance to
their conversation partner to an appropriate amount; however, a robot would
need to conduct a careful computation to decide what distance it should keep
during an interaction with its human counterpart. Even more difficulties are
involved when the interaction is more complex, for example, when a robot
has to approach a person, when it has to maintain spatial formation during a
conversation, or when it has to navigate together with a person on the move.
These considerations are important not only for achieving socially acceptable
and comfortable HRI but also for ensuring that people understand the robot’s
intentions and can engage with robots safely in their physical space.

Questions for you to think about:

• Let’s role-play: To understand how much social information is
involved in creating socially appropriate navigation, try to behave like
a dumb robot that does not process any social information about space
when interacting with a friend (maybe inform your friend beforehand,
or “forget” to do so for a more natural response). What happened?
How long could you keep this up?

• Think back to a situationwhen somebody violated your personal space.
How did you notice? What was your reaction?

• Imagine you are an engineer building a robot. This robot will come to
the market in Japan, Mexico, and the United States. Will the product
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be the same for every country? Will the robot’s spatial-navigation
behaviors differ? If so, how?

• Think about the use of a robot in various daily situations (e.g., at home,
at the office, and on a crowded train). Now, think about how you
need to adapt the spatial-navigation behavior of the robot to fit each of
these contexts. What would be important factors to consider in these
different contexts?

5.4 Exercises

The answers to these questions are available in the Appendix.

* Exercise 5.1 Formations Group spatial dynamics, as shown in the accom-
panying diagram, were described by Adam Kendon (1990) as the “facing
formation,” or “F-formation.” For this question, associate the four images (a,
b, c, d) with their formation names.

(a) (b) (c) (d)

Circular formation:1.
L-formation:2.
Face to face:3.
Side by side:4.

** Exercise 5.2 What is the typical maximum distance for social space?
** Exercise 5.3 What is the typical maximum distance for personal space?
** Exercise 5.4 What is the typical maximum distance for intimate space?
** Exercise 5.5 What is the typical minimum distance for public space?
*** Exercise 5.6 Spatial navigation Robots are physically embodied, so
they not only take up space but also need to be able to navigate it appropriately
along with humans in everyday interaction. Based on your own experiences
with spatial interaction, as well as the chapter you just read, imagine how
you would design a “socially intelligent” Roomba-like vacuum cleaner. What
might this mobile robot need to know, and how should it adapt its behavior to
socially navigate the context of your home? What kinds of actors, activities,
social norms, preferences, and so forth would it need to be aware of? What
aspects of its behavior should it adapt to fit the context? Now consider a similar
robot outside the home, for example, a food delivery robot that drives on city
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94 Spatial Interaction

streets. What kinds of spatial knowledge and behavioral adaptations does this
robot need to make so as not to inconvenience passersby and to be able to
comfortably approach the person it is trying to make a delivery to?

Future reading:

Textbook to learn basic techniques for robot navigation:

• Choset, Howie M., Hutchinson, Seth, Lynch, Kevin M., Kantor,
George, Burgard, Wolfram, Kavraki, Lydia E., and Thrun, Sebastian.
Principles of Robot Motion: Theory, Algorithms, and Implementation.
MIT Press, Cambridge, MA, 2005. ISBN 978-026203327. URL
http://worldcat.org/oclc/762070740

More reading about space-related studies in HRI:

• Kruse, Thibault, Pandey, Amit Kumar, Alami, Rachid, and Kirsch,
Alexandra. Human-aware robot navigation: A survey. Robotics and
Autonomous Systems, 61(12):1726–1743, 2013. doi: 10.1016/j.robot.
2013.05.007. URL https://doi.org/10.1016/j.robot.2013.05.007

• Mumm, Jonathan, and Mutlu, Bilge. Human-robot proxemics: Phys-
ical and psychological distancing in human-robot interaction. In
Proceedings of the 2011 ACM/IEEE International Conference on
Human-Robot Interaction, pages 331–338. Association for Computing
Machinery, New York, 2011. ISBN 978-1-4503-0561-7. doi: 10.114
5/1957656.1957786. URL https://dl.acm.org/citation.cfm?doid=195
7656.1957786

• Satake, Satoru, Kanda, Takayuki, Glas, Dylan F., Imai, Michita,
Ishiguro, Hiroshi, and Hagita, Norihiro. How to approach humans?
Strategies for social robots to initiate interaction. In 4th ACM/IEEE
International Conference on Human-Robot Interaction, pages 109–
116. Association for Computing Machinery, New York, 2009. ISBN
978-1-60558-404-1. doi: 10.1145/1514095.1514117. URL https:
//doi.org/10.1145/1514095.1514117

• Walters, Michael L., Dautenhahn, Kerstin, Te Boekhorst, René, Koay,
Kheng Lee, Syrdal, Dag Sverre, and Nehaniv, Chrystopher L. An
empirical framework for human-robot proxemics. Proceedings of New
Frontiers in Human-Robot Interaction, 2009. URL http://hdl.handle
.net/2299/9670
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6

Nonverbal Interaction

What is covered in this chapter:

• The role of nonverbal communication in interactions between
people—how communication is enhanced by facial expressions, hand
gestures, body posture, and sounds.

• The importance of interpreting, using, and responding to nonverbal
cues in the appropriate way, both to successful human–robot interac-
tions and to generate a positive perception of robots.

• Nonverbal communication channels that are unique to robots, as well
as channels that replicate those commonly used by humans.

• How robotic sounds, lights, and colors or physical gestures with arms,
legs, tails, ears, and other body parts can be effective for communica-
ting with people.

When we think of what it means to communicate with someone face to face,
the first thing that comes to mind is often the content of our speech—what
we are saying to each other—rather than the manner in which such content
is delivered. Just for a minute, though, imagine speaking face to face with
someone without the ability to look at the person or use gestures. Not only
would you be uncomfortable, but you might also have difficulty getting
the intended meaning across. Moreover, without the nonverbal “channel,” it
seems harder to establish a strong connection with the person, particularly
when you communicate with a stranger.
This chapter covers this unspoken (i.e., nonverbal) component of our social

interactions, both with other humans and specifically with robots. Section 6.1
highlights the different functions that nonverbal communication plays. Section
6.2 dives deeper into the different kinds of nonverbal behavior, such as gaze
and mimicry. Finally, Section 6.3 explicitly focuses on how robots can read
and generate nonverbal behavior.
As shown in the previous example, people constantly and seemingly

automatically give off and pick up on a variety of nonverbal cues while
interacting. These cues are used to interpret the nuances of meaning, emotion,
and intention in others. Nonverbal cues are such an important aspect of human
communication that being unable to produce and decipher them appropriately
makes interaction quite challenging. Anyone may experience a sense of
bewilderment when they go to another country—we may find it difficult

95
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96 Nonverbal Interaction

to summon the waiter to give us the bill or might struggle to read another
person’s face in order to understand what he or she is feeling. The importance
of nonverbal cues is acutely experienced by people with disorders such as
autism, who have difficulty noticing and interpreting nonverbal social cues
in others. On the other hand, being sensitive to nonverbal cues can improve
one’s understanding of an interaction. For example, researchers who have used
“social sensors” to measure aspects of nonverbal behavior, such as gaze and
rhythmicity, can predict which people will exchange cards at a conference
(Pentland and Heibeck, 2010) or which couples will break up within a six-
year period, based on thin slices of nonverbal behavior (Carrere and Gottman,
1999).
Even in the earliest social robot designs, nonverbal cues that are present

in human interaction have been actively used to enrich interactions with
the robot. They are typically used in combination with speech to provide
supplemental information on the robot’s internal state or intentions. Kismet,
one of the first social robots (see Figure 2.4), used postural cues, such as
pulling back or leaning forward, to express affect and engage people in
interaction (Breazeal, 2003). Keepon, a minimalist social robot (see Figures
2.7 and 4.8), uses gaze and reactive motion to express attention and affect
(Kozima et al., 2009). Many robots are also capable of engaging in joint
attention to signal engagement with the user and a shared task. Next, we
discuss the functions and types of nonverbal cues and their uses in human–
robot interaction (HRI).

6.1 Functions of nonverbal cues in interaction

Nonverbal cues allow people to communicate important information “between
the lines.” They add a further layer of information to human (and human–
robot) interaction, adding to what is being communicated linguistically.
Through nonverbal communication, people can signal mutual understanding,
shared goals, and common ground. They can communicate thoughts, emo-
tions, and attention. And they can do so in a more subtle, indirect manner than
through verbal expression.
In psychology, nonverbal communicative cues, such as eye gaze, body

posture, or facial muscle activity, are often studied as implicit indicators
of affect toward a person or an object. Many of the nonverbal signals we
convey are expressed automatically without much thought or even entirely
unconsciously. Therefore, nonverbal cues are often believed to be unfiltered
and more genuine, revealing people’s “true” attitudes. For instance, your body
language can communicate a message very different from your speech. Think
of an acquaintance you do not like very much. Although you might greet
this person in a friendly manner and start a seemingly amicable chat, your
nonverbal cues might give away your true feelings. You might look at the
person more briefly, frown rather than smile, and avoid physical contact while
not even being aware that your nonverbal cues are incongruent with your
verbal chitchat.
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6.1 Functions of nonverbal cues in interaction 97

Nonverbal cues are equally important for HRI. Nonverbal cues produced
by people when interacting with a robot can indicate whether a person is
enjoying the interaction and whether the person likes the robot or not. They
can therefore act as a measure or cue of attitude or engagement and be
used to guide the robot’s behavior. Even in the HRI context, verbal and
nonverbal cues might be contradictory. For example, people may verbally
express positive ideas about a robot while the nonverbal cues suggest they
are tense or anxious while interacting with it. HRI may also be affected
by the way robots produce nonverbal cues. For example, an interaction can
appear awkward when the robot produces gestures that do not match the
rhythm or meaning of its speech or when it does not respond appropriately
to people’s nonverbal cues. Early research on HRI focused mainly on speech
as the most obvious mode of communication for robots, but researchers
now agree that nonverbal cues are central to HRI, and their implementation
is widely accepted as a prerequisite for smooth and successful interaction
between humans and robots. To illustrate, think of human eye gaze during
a conversation. Eye gaze occurs automatically, without much thought, but at
the same time, it signals shared attention—that both people are talking about
the same thing—and acknowledges the conversation partner. When speaking
to a robot, we would expect the robot to turn its head toward us and make
eye contact with us, showing that it is attending to what we say. A robot that
displays such nonverbal behavior will make the interaction seem more natural
and smooth. Conversely, we notice immediately when some of this “social
glue” is absent—we can sense that something is going wrong, even though it
might be difficult to pinpoint exactly what is missing. When the robot stares
straight ahead and does not acknowledge our presence or spoken requests, the
interaction breaks down.
As with all information, nonverbal communication always occurs in a

specific context, which renders the respective nonverbal signals appropriate
or not. This context may be restricted by specific social and cultural norms.
For example, in Western societies, people shake hands to greet each other
formally, whereas a respectful greeting in Japan is performed by bowing.
Even the degree to which one person bows to another signals social status
and hierarchy. This might be almost imperceptible to the naive observer,
but it is immediately obvious to those who understand the relevant cultural
norms. Similarly, a conversation with a person from a Western society would
naturally include continuous eye contact or even physical touch. However,
this might be interpreted as threatening or rude in another cultural context.
Such social and cultural differences are being taken up in recent HRI research
on designing culturally sensitive interactions, such as investigating the impor-
tance of nonverbal cues for the cross-cultural deployment of social robots.
For example, researchers from the United Kingdom and Japan have worked
together to develop culturally competent care robots, a task that involves
developing cultural knowledge representations, culturally sensitive planning
and execution, and culturally appropriatemultimodal HRI (Bruno et al., 2017).
Designing HRI that meets social norms and cultural expectations might mean
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98 Nonverbal Interaction

the difference between a successful product and a wasted investment (see
Figure 6.1).

6.2 Types of nonverbal interaction

Although we exhibit and experience nonverbal cues in several modalities
at once—such as sound, movement, and gaze—it might be worthwhile to
consider each channel of communication separately when trying to implement
nonverbal signals into HRI. Understanding the functions and effects of various
nonverbal cues allows us to then combine them as needed for different tasks
and effects in HRI.

Figure 6.1
Culturally
appropriate
nonverbal cues can
make
communication
between people and
robots more natural
and pleasant.

6.2.1 Gaze and eye movement
Imagine you are conducting a job interview, and the job candidate responds to
your inquiries without looking at you, staring only at the desk in front of them.
Even while you are sketching a graph on the whiteboard, the job candidate
does not follow your gaze toward what you are drawing. Would you hire the
person? Probably not, because this type of gaze behavior would likely come
across as a lack of interest in you and what you are talking about.
Gaze is a subtle and important cue for managing social interaction. Gaze

signals interest, understanding, attention, and people’s ability and willingness
to follow the conversation. Beyond their social function, gaze and eye move-
ments also facilitate functional interactions and collaboration, such as handing
an object to someone or calling someone’s attention to the next tool needed in a
task. Eye-tracking technology can be used to assess gaze patterns and provide
insights into information processing and human cognition. Pragmatically,
analyzing gaze patterns can also help to ensure that a given task has been
completed smoothly. Gaze can also be a way of soliciting and keeping another
person’s attention during an interaction. For instance, gaze can be a way to
manage turn-taking in interactions; by looking from one person to another,
the speaker might suggest whose turn it is to speak next.
A particularly well-established component of gaze behavior in human inter-

action is joint attention. Joint attention refers to interaction partners attending
to the same area or object at the same time. The significance of this behavior
for human development starts in early childhood, when joint attention is a
major scaffold for learning. The ability to attend to the same object at the same
time with an adult caregiver is an important prerequisite for infants’ ability to
learn new words and behaviors (Yu and Smith, 2013), whereas the inability to
perform joint attention can lead to developmental difficulties (Charman et al.,
2000). Joint attention in adult communication can also signify interest and
deep involvement in the interaction and is important for collaborative tasks
where actors need to coordinate their activities. To achieve joint attention, the
timing and synchrony of gaze behavior are important aspects to consider.
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6.2 Types of nonverbal interaction 99

Figure 6.2 Pupils
signal attraction,
even in robots.

The eyes are a window to the soul, or in this case, they unconsciously
reveal how much you like your interaction partner. Pupil dilation is
controlled by the autonomic nervous system, as are uncontrollable reac-
tions such as an increase in heart rate or goose bumps. When people
see physically attractive others, their pupils automatically dilate. This
also works the other way: people judge faces with larger pupils as more
attractive than those with more visible irises. Pupil dilation can be used
on robots to give the impression that the robot is attracted to the user (see
Figure 6.2).

Joint attention has been incorporated into HRI in several ways: Imai et al.
(2003) used it as a way of scaffolding smoother communication with people
so that they know what the robot is talking about, both in conjunction with
and without speech. Joint attention has also been studied as a fundamental
capability of robots that want to learn from humans, particularly humanoid
robots (Scassellati, 1999). Finally, joint attention with robots has been studied
in interactions with children who have autism, with the aim of using the robot
to assist them in developing this important social skill.
When used in HRI, robot gaze cues most often produce similar effects as

they would in human interactions. This may be because researchers have used
human gaze behavior to derive models of gaze behavior for robots, and they
have shown that the resulting gaze cues can be used to lead people to take
on different conversational roles as addressees, bystanders, or nonparticipants
(Mutlu et al., 2012). In a multiparty interaction, a robot can use its gaze to
control who will be the next person to talk (Mutlu et al., 2009). Andrist et al.
(2014) used face-trackingmovements to engage inmutual gaze and purposeful
gaze aversions in an HRI study to show that such cues can make a robot seem
more intentional and thoughtful. Mutlu et al. (2006) also showed that a robot’s
gaze cues, modeled on those of humans, used in the course of telling a story
affected how well people remembered the story’s content; the people with
whom the robot kept gaze contact could recall more details from its story.
Robot gaze can therefore be a powerful way to manage interactions with one
or more people (see Figure 6.3).

6.2.2 Gesture
Following speech, gesturing is perhaps the most apparent way of providing
information during an interaction. Gestures can function in place of or along
with speech and are often categorized based on their role in communication.
Deictic gestures involve pointing to specific things in the environment and
can be important for establishing joint attention. Iconic gestures often go
along with speech, further supporting and illustrating what is being said. For
example, opening your arms wide while saying you are holding a big ball
would be an iconic gesture, as would smoothly moving your hand upward
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100 Nonverbal Interaction

Figure 6.3 The eyes of
robots are often
designed to pitch and
yaw, allowing a robot to
use gaze as an effective
communication
channel. Here, iCub
(2004–present) gives a
good impression of
attending to the ball in
its left hand.

Figure 6.4 A Pepper
(2014–present) robot
using hand gestures to
accompany its speech.
Without these
automatically generated
beat gestures, the
robot’s speech would
appear less natural.
(Source: Pepper robot
by SoftBank Robotics)

while explaining how your airplane took off. Symbolic gestures, such as
waving hello or goodbye, can carry their own meaning, with or without
accompanying speech. Finally, beat gestures are used to go along with the
rhythm of speech and look like moving one’s arms while speaking as if
conducting an invisible orchestra (see Figure 6.4). Gestures can also be used
for emphasizing particular moments during speech, such as lifting your hands
up while saying “what?” when you are surprised by something.
Gestures are likewise a powerful way of enhancing spoken communication

in HRI. A robot may be designed to gesture through its arms and hands or other
body parts, such as its head, ears, or tail. The shape, timing, naturalness, and
smoothness of gestures can also affect people’s perceptions and understanding
(Bremner et al., 2009). Salem et al. (2013) showed that including gestures
along with speech in HRI led to the ASIMO humanoid robot being perceived
as more anthropomorphic and likable, with participants expressing greater
willingness to interact with the robot later on than when the robot communi-
cated through speech alone. Interestingly, this study also showed that the use
of gestures performed incongruently with speech led to evenmore pronounced
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6.2 Types of nonverbal interaction 101

positive effects in evaluations of the robot, although it had a negative effect on
task performance. Gestures should therefore be used carefully in the design of
robots, and their effects should be tested in studies with humans to gauge their
effects on specific interactions.
The generation of co-speech gestures for artificial agents, such as online

characters or robots, is now largely done through machine learning. Gesture-
generation software is trained by feeding it hundreds of hours of video
recordings of people talking, allowing machine learning to build a model
that generates gestures that closely fit spoken communication. For now, these
models will not always generate a gesture that fits themeaning of what is being
said, but the dynamics of gestures themselves are virtually indistinguishable
from human co-speech gestures (Yoon et al., 2022).

6.2.3 Mimicry and imitation
Another aspect of nonverbal interaction that has been given much attention
in the human-interaction literature is mimicry and imitation. By mimicry, we
mean the unconscious replication of the behavior of another person, and by
imitation, wemean the conscious replication of another’s behavior (Genschow
et al., 2017).Mimicry and imitation are performed not only by humans but also
by primates (hence the notion of “aping someone”) and are considered basic
social capabilities. Mimicry is so central to human cognition that it has been
found to have a neurological basis. The mirror neuron system in the primate
brain contains clusters of mirror neurons (Rizzolatti and Craighero, 2004).
These neurons fire both when observing someone doing an action you also
know how to do, such as picking up a grape, or when you are doing that
action yourself, and they are believed to be responsible for facial mimicry,
the unconscious and automatic mimicking of the facial expressions of others
Rymarczyk et al. (2018).

Researchers in Japan found a band of macaques that all wash their sweet
potatoes in a stream. This behavior was traced to a female member of
the troop, who may have initially done this once by accident, and then
others copied her when they realized that washing the potatoes produced
a less gritty and more pleasing meal, so they continued the practice.
Observations of this kind have led to the claim that animals, not only
humans, have “culture” (Whiten et al., 1999; De Waal, 2001).

In humans, mimicry and imitation have multiple developmental functions.
In early childhood development, mimicry and imitation provide a common
way to learn new behaviors and culturally relevant social norms. Children use
mimicry to learn to do things in particular ways—such as talking with a British
accent or making expressions similar to those of a family member. As adults,
we can also use imitation to blend into our social and cultural surroundings,
such as gesturing more emphatically when we are speaking Italian or visiting
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102 Nonverbal Interaction

Italy. As such, imitation and mimicry can be important ways of developing
signs of in-group identity.
Mimicry, as a largely automatic behavioral response, also has many sig-

nificant social functions; one is that it indirectly signals positive affect and
liking for an interaction partner. If two people use the same gestures or adopt
the same postures during a conversation, it is usually because they have
established a positive relation in that interaction. Similarly, when people’s
nonverbal cues are out of sync and not mirroring each other, you can sense that
the communication is not running smoothly. Mimicry, as a subtle nonverbal
cue, can thus be a helpful signal to interpret, for instance, in the context of
dating or job interviews.

Mimicry’s significance in establishing a social relationship with another
person makes it possible for its manipulation to function as a tool for
persuasion. In studies of the “chameleon effect,” Chartrand and Bargh
(1999) found that subtle mimicry of a person’s gestures and posture can
help that person persuade an interaction partner to agree with his or her
suggestions. For example, if you sit with your right leg crossed over
your left, and your interaction partner subtly adopts that position, too,
before telling you that Candy A tastes better than Candy B, you are more
likely to choose to try Candy A over Candy B than if the person had
not mimicked your posture (see Figure 6.5). However, this effect is time
dependent. If you notice your conversation partner mimicking you, either
because they are too obvious about it or too late in their timing, their
intentions will backfire because you may see them as manipulative or
insincere.

Various aspects of imitation and mimicry have been implemented and
evaluated in the design of robots. There is a large and growing collection

Figure 6.5 Similar to a
chameleon adjusting its
color to the
environment, the
chameleon effect refers
to mimicking a person’s
gestures or facial
expressions.
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6.2 Types of nonverbal interaction 103

of literature on robot learning by imitation, in which robots in some way
record and then reproduce actions performed by humans (Argall et al., 2009;
Mostafaoui et al., 2022). Riek et al. (2010) developed an apelike robot that
mimicked users’ head gestures, and their findings suggest this made a positive
contribution to people’s interactions with the robot, although these gestures
were not always clear to participants.
If we combine what we know about mimicry (see Section 6.2.3) and posture

(which will be discussed shortly, in Section 6.2.5) from human psychology,
we can design robots that are able to display certain types of behaviors (e.g.,
leaning in) to affect how people behave and, therefore, how they feel. For
example, Wills et al. (2016) showed that a robot that mimicked people’s
facial expressions and displayed socially contingent head poses received more
monetary donations than a robot that did not display such behavior. Imitation
and mimicry can therefore be used as both conscious and unconscious social
cues in HRI to improve interaction and persuade people to follow the robot’s
suggestions.

6.2.4 Touch
Touch is a nonverbal cue that is often involved in close interactions among
people, such as those between friends or between caregivers and patients.
We often use touch deliberately, for example, to calm down someone who
is agitated or to console someone who is sad. We also often incidentally touch
people we feel attracted to or whomwe like. It turns out that these people often
also like us more when this happens. Both deliberate and incidental touch can
therefore have beneficial effects, particularly when the interaction partners are
part of the same social group. It is important, however, to know when and how
it is appropriate to touch someone.
In everyday life, touch is sometimes used deliberately to achieve a goal.

According to the so-called Midas effect, waiters and waitresses get a higher
tip if they happen to incidentally touch their customers before they pay for
their meal (Crusco and Wetzel, 1984). Touch does not always have positive
effects, however, particularly when people who identify with different social
groups are interacting with each other. In this case, touch may even lead to
more negative feelings about the interaction partner. Incidental touch has also
been shown to lead to a reduction in more indirect, but not direct, forms of
prejudice against an out-group (Seger et al., 2014). Results on the effects
of touch between human groups are therefore mixed, and it is interesting
to consider what role touch might play in interactions between humans and
robots, which may represent a new social group in the society of the future.
Physical interaction with robots is relatively uncommon for a number of

reasons. One significant issue is the lack of safety during haptic interactions,
with simple actions like hugging, holding, or shaking hands already forming
a safety concern. Despite the fact that many robots are explicitly designed for
HRI, tactile or haptic interaction has in many cases been an afterthought. For
example, Aldebaran Robotics’ Nao and Pepper robots, while widely sold as
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104 Nonverbal Interaction

commercial social robots, both have pinch points under the arms and near the
hips that can painfully trap fingers. Only a limited number of robots are explic-
itly designed to allow physical human–robot interactions (see Figure 6.6), with
most robots prone to suffer breakage when being manipulated or handled with
forces that would not be uncommon in interactions between people.

Figure 6.6 Telenoid
(2010–2013) is a
haptic robot that is
designed to be
hugged. Studies on
whether this is a
form of interaction
people are
comfortable with are
ongoing. (Source:
Hiroshi Ishiguro)

The few studies on touch in HRI that are available in the literature demon-
strate the need for more empirical work on this nonverbal cue (Van Erp and
Toet, 2013;Willemse et al., 2016). On the positive side, tactile interaction with
animal-like robots, such as Paro or the Haptic Creature (Figure 6.7), show that
people can feel less stressed and anxious when they initiate such interactions
(Shibata, 2012; Yohanan and MacLean, 2012). Chen et al. (2014) showed
that people did not mind being touched by a robot in a nursing scenario,
but they evaluated functional touch (e.g., to clean their arm) more positively
than affective touch (e.g., to comfort them). In contrast, a recent study by
Wullenkord et al. (2016) explored the negative consequences of touch in an
interaction with the robot Nao. Participants reported their attitudes toward a
Nao robot, then had to touch the robot as part of a task. After the task, they
reported their attitudes and social judgments about the robot again. Overall,
contact improved the participants’ attitudes, such that people expressed more
positive and less negative attitudes after the touch interaction as compared to
one without touch. However, people who had particularly negative emotions
toward robots at the onset of the study experienced the opposite effect and had
more negative perceptions after they touched the robot.

Figure 6.7 The
Haptic Creature
(2005–2013) was
designed by Steve
Yohanan to study
the role of affective
touch in social HRI.
(Source: Steve
Yohanan)

Touch is an integral part of natural human–robot interactions, for example,
in functional tasks such as object handovers and manipulation and in social
tasks such as a handshake for greeting. In both functional and social uses, we
need to keep in mind the psychological implications of incidental or deliberate
touch, whether it is being touched by a robot or having to touch a robot.

6.2.5 Posture and movement
People also communicate through their full-body posture and theway inwhich
they move. Along with facial expressions, postures can be used to signal a
person’s emotional state. Slow movements, drooping shoulders, and lethargic
gestures all suggest a downcast state of mind, whereas fast movements and an
upright bearing are signs of a positive attitude. These types of postural cues
are particularly important when a person’s face is not visible, but they can
also provide additional cues to a person’s state of mind even when we can
see the person’s facial expression. Researchers have found that people can
interpret these types of nonverbal cues not only when they see the whole body
of the person but also in minimalist light dot displays that depict a person’s
movements (Alaerts et al., 2011).
The way we pose can signal attention, engagement, and attraction in an

interaction between humans. People might be displaying a defensive posture
by holding their arms in front of them, whereas open arms are a clear invitation
for engagement, perhaps even a hug. How we are posed in relation to other
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6.2 Types of nonverbal interaction 105

people can also provide valuable information; if two people are sitting with
their knees toward each other, it shows willing engagement, whereas if one
person is turned partly away from the other, it can show a desire to discontinue
the interaction.

The Thrifty Faucet (2009) is a simple interactive prototype that uses its
posture to communicate 15 lifelike motion patterns, including seeking,
curiosity, and rejection, to users. The aim is to enable communication
with users about more sustainable water use (Togler et al., 2009).

(Source: Jonas Togler)

Bodily postures can provide an additional layer of expressiveness to robots
(see Figure 6.8). To illustrate, when a robot lacks expressive facial features,
the body can be used as the primary way to communicate emotions. Beck
et al. (2010) showed that affective body postures can improve people’s
understanding of a robot’s emotional state. A robot’s posture can be used to
express emotion and, through that, affect the emotions of onlookers. Xu et al.
(2014) showed that people were not only able to interpret the affective body
postures of robots but also that they adopted the emotions they thought the
robots were showing.
Robot designers have furthermore realized that micromovements, barely

perceptible motions, can convey the impression that the robot is lifelike
(Yamaoka et al., 2005; Ishiguro, 2007; Sakamoto et al., 2007). These micro-
movements are often implemented as small, random perturbations to the
robot’s actuators. Such lifelike animations can also be used to signal the robot’s

Figure 6.8 A Nao
robot
(2008–present)
using body postures
to express emotions,
morphing between
sad (left) and fearful
(right). (Source:
Beck et al. (2010))
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106 Nonverbal Interaction

internal state; for example, the velocity or amplitude of the motion signals
the excitement level of the robot (Belpaeme et al., 2012). This approach has
been successfully used on petlike small robots (Cooney et al., 2014; Singh and
Young, 2012).

6.2.6 Interaction rhythm and timing
The temporal nature, or “timing,” of communicative cues carries its own
significance in interaction. In verbal communication, we refer to this as turn-
taking among interaction partners. Nonverbal cues (e.g., gaze, gesture) can
support this turn-taking by guiding attention to the appropriate interaction
partner or signifying the end of a turn. Establishing synchronized temporal
patterns of interaction can further scaffold the communicative and collabora-
tive success of an interaction.
The “rhythmicity” and “synchrony” of an interaction provide a largely

unconscious but crucial component of human communication. To understand
what we mean by interaction rhythms, think about human interaction as
a coupled system working together. In order for two people to be able
to communicate and work effectively, they need to become “rhythmically
entrained” to each other’s actions—to be doing things not necessarily at the
same time but to the same beat. Like in dance, rhythmicity enables people to be
more attuned to each other’s communicative cues, to be looking, speaking, and
moving at the right time to enable clear and smooth communication among the
two partners (Warner et al., 1987). Although often unconscious, the effects of
rhythmicity on interaction are significant: being out of synchrony can imply
that interaction partners have missed important social signals and are therefore
unable to interpret each other’s behavior; it can also lead to a more negative
interaction outcome and a less positive attitude toward the other person.
Michalowski et al. (2007) showed that a robot that is rhythmically entrained

with a human interaction partner is considered more lifelike than a robot
that is behaving rhythmically but is not synced with the human. They also
showed that people are more likely to interact for a longer time with a
rhythmically entrained dancing robot. Rhythmicity in interaction can also
be useful in supporting turn-taking and collaboration in teams, including
anticipation of people’s behaviors and when they will show those behaviors
(Hoffman and Breazeal, 2007). Finally, Siu et al. (2010) showed that listening
to highly rhythmic music while performing robotic surgery can improve the
performance of the human–robot surgical team. These findings suggest that
rhythmicity in HRI can improve both the perceived quality of the interaction
and the chances of a successful outcome.

6.3 Nonverbal interaction in robots

6.3.1 Robot perception of nonverbal cues
Standard pattern-recognition techniques are used to allow robots to perceive
and identify human nonverbal cues. Posture and gesture recognition are well
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6.3 Nonverbal interaction in robots 107

studied. Typical systems use cameras, depth cameras, or sensors carried by
the user to record a time series of data. Although software could be written to
recognize a limited number of gestures, instead it is common to use machine
learning to train the system to recognize gestures and other nonverbal cues. To
achieve this, a database is collected of, for example, people showing different
gestures. Typically, thousands or even millions of data points are needed,
and each needs to be labeled, meaning that for each data point, we need
to note what it is showing. Is it a person waving, pointing, or beckoning?
Next, a classifier is trained on the labeled data; this is often an iterative
process in which the classifier’s performance improves when more data are
processed. Once the performance is sufficient for the application, the classifier
is deployed on the robot (Mitra and Acharya, 2007).
These basic perception techniques are used to allow HRI researchers to

evaluate whether people are actually engaged in interactions with robots.
Unlike typical human interaction, where it is expected that the human partner
will be attentive and engaged, in HRI, users sometimes do not attend to
what the robot says and signals. Thus, perceiving the “engagement” of users
is a crucial step for enabling robots to create a successful interaction. Rich
et al. (2010) developed a technique to integrate the detection of cues such
as eye contact and back-channeling to identify whether a user is engaged in
interaction. Sanghvi et al. (2011) analyzed affective postures and body motion
to detect engagement with a robotic game companion.
Although the constant advancement of technology allows for the improve-

ment of robotic perception capabilities, researchers also add special equipment
to the robot, such as eye trackers and motion-capture systems, to provide
data on nonverbal cues relevant for interaction. For tactile interaction, there
has been some research in the robotics field in which film-type piezoelectric
polymer sensors were inserted in thin and thick silicone rubber (Taichi et al.,
2006) or where flexible capacitive sensors or skin with nano hairs is added to
the robot’s body to allow the detection of tactile events with high sensitivity
and high temporal and spatial resolution (Yogeswaran et al., 2015).

6.3.2 Generating nonverbal cues in robots
Generating gestures and other nonverbal cues is not trivial in robots. The
nonverbal cues need to be contingent on the interaction: if the user snaps her
fingers, the robot needs to blink immediately. Nonverbal cues also need to be
coordinated with each other and with other cues, including verbal interaction,
in terms of both the semantic meaning and the timing of execution. HRI
poses particular challenges for the perception and generation of nonverbal
cues because all this has to be done in real-time.
An important aspect of HRI design is generating nonverbal behaviors for

robots that appropriately accompany speech. This is often inspired by the way
humans use nonverbal cues in dialogue. Kanda et al.’s (2007a) robot system
automatically generates nonverbal cues, such as nodding and synchronous
arm motions, to exhibit its attentional state to the user in correspondence
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108 Nonverbal Interaction

to the user’s arm gestures. Co-speech gesturing—the use of hand, arm, and
body gestures that coincide with and match the spoken communication of the
robot—has seen good progress in recent years. The best generation methods
currently are training on human data. Machine learning methods, often using
deep neural networks, are used to learn from hundreds of hours of video
recordings of people talking and gesticulating. These methods are now able to
generate natural-looking co-speech gestures, with the semantics of gestures—
the match between what is being said and what is being expressed by the
robot’s body—still being a work in progress (Yoon et al., 2022).

Animation framework The most simple and most frequently used approach
is to generate motions with an animation framework. That is, a robot designer
will typically control each of the joint angles of a robot to set a posture for it;
this is called a key frame. After the designer prepares multiple key frames, the
system interpolates the postures between them and generates smooth motions
for the robot.
This requires extensive effort by the designer. Graphical user interfaces

(GUIs) are often used to reduce the amount of effort in motion design. The
commercial robots Nao and Pepper come with a GUI called Choregraphe,
which helps designers visually display the posture of the robot and create
desired motions more easily and quickly (see Figure 6.9). Lively is a GUI
environment developed by Schoen et al. (2023) to generate lifelike motion for
social and other robots that takes obstacles near the robot into account.
Other techniques used for animation or virtual agents can also be used for

generating motions for robots. Motion-capture systems can be used to record a
timed series of precise human motions, which can then be replicated in robots.
Robot designers have also taken advantage of markup languages for virtual
agents, such as Behavior Markup Language (BML), in which a designer can
specify which gesture an agent should exhibit in combination with speech
(Kopp et al., 2006).

Figure 6.9
Choregraphe is a visual
editor for the Nao and
Pepper robots. It
contains a pose editor
that allows the robot
designer to efficiently
generate postures and
animations for the
robot.
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Cognitive mechanisms for robots Another approach to achieving natural
behavior in robots is to endow the robot with some form of artificial cognition,
which is an artificial equivalent of natural cognition. Although it is, of course,
currently impossible to create robots that have the full cognitive capabilities of
people, combining artificial equivalents of cognitive mechanisms has proven
to be particularly effective for creating lifelike robots. So instead of hand-
programming the robot’s nonverbal behavior, different cognitive skills are
combined, and the resulting behavior often appears natural and lifelike.
Scassellati (2000) developed an embodied cognitive architecture that takes

into account salient objects, task constraints, and the attentional state of others
to link the robot’s perceptions of the world with high-level cognitive skills
and related actions, such as joint attention, attribution of intent to others, and
social learning. These mechanisms were shown to be particularly effective in
the Kismet robot (Figure 2.4). Sugiyama et al. (2007) developed a cognitive
mechanism for a robot to replicate human deictic interaction. This involves
using pointing (deictic) gestures in reference to a term, such as “this one”
or “that one,” that signifies a target object the listener can identify. The
details of deictic interaction can also depend on the target. For example, we
would not point directly at a nearby person because it is impolite. Liu et al.
(2013) developed a computational model for a robot that balances two factors,
understandability and social appropriateness. It enables a robot to refrain from
exhibiting impolite pointing gestures while still keeping its deictic interaction
understandable.

6.4 Conclusion

This chapter highlighted the important role of nonverbal cues in communi-
cation between humans and robots. The implementation of nonverbal cues
into the communicative repertoire of robots still calls for further technical
advancement and refinement, particularly because nonverbal cues represent
such subtle aspects of communication. Existing research illustrates the rele-
vance of nonverbal communication in HRI while also making clear that much
more work needs to be done before robots will be able to act and react in
humanlike and natural ways in everyday communication with people.

Questions for you to think about:

• Still not convinced that nonverbal cues are important? Get up right now
and have a conversation with someone, but do so without looking at
the person’s face. How did it go? How did you feel? Also, afterward,
ask your communication partner what he or she thought about your
behavior and how it made him or her feel.

• Think of a robot use case you are interested in. What aspect of
nonverbal behavior is particularly relevant for this scenario? Would
gesture or gaze be particularly helpful? How about contingency and
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110 Nonverbal Interaction

timing? If you need some inspiration, you can go out and observe
people in a similar context and see what they do.

• Have you ever watched a video where the audio track was a fraction
of a second out of sync? Or videoconferenced with someone where
the audio lagged? How did that affect the interaction? How long did
you think the delay was? What, if anything, did you do to manage the
difficulties in the interaction?

• How would you know if a robot is using is nonverbal cues effectively?
Is there a way in which you can measure the quality of nonverbal
interaction? Can you measure the outcome of the interaction?

6.5 Exercises

The answers to these questions are available in the Appendix.

* Exercise 6.1 Tipping When waiters and waitresses happen to incidentally
touch their customers before they pay for their meal,

they get a lower tip.1.
they get a bigger tip.2.
the tip amount doesn’t change.3.

*** Exercise 6.2 Timing Timing is an important component of verbal and
nonverbal interaction. Give at least two examples of problems that can emerge
in relation to the role of timing in HRI. How might you solve these problems,
taking into account how they are solved in other social interactions where the
interactants miss out on certain social cues (e.g., texting, time delays in Skype
calls, Zoom calls when you can’t look at someone in a group to signify you
are talking to them)?
** Exercise 6.3 True or false Decide whether the following statements are
true or false:

Nonverbal behavior is mostly conscious.1.
Nonverbal behavior can be used to predict social outcomes, such as
whether a couple will stay together.

2.

Nonverbal and verbal behavior always align.3.
Nonverbal behavior is not very relevant for human–robot interactions.4.
Mimicry is an unconscious behavior, and imitation is a conscious behavior.5.
Gaze is only important for showing someone that you’re listening to them.6.
Proxemics (i.e., social distance) is a part of nonverbal communication.7.
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g/10.5898/JHRI.6.1.Admoni

• Breazeal, Cynthia, Kidd, Cory D., Thomaz, Andrea Lockerd, Hoff-
man, Guy, and Berlin, Matt. Effects of nonverbal communication on
efficiency and robustness in human-robot teamwork. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 708–713. Institute of Electrical and Electronics Engineers, Pis-
cataway, NJ, 2005. ISBN 0-7803-8912-3. doi: 10.1109/IROS.2005.
1545011. URL https://doi.org/10.1109/IROS.2005.1545011

• Mavridis, Nikolaos. A review of verbal and non-verbal human–robot
interactive communication. Robotics and Autonomous Systems, 63(1):
22–35, 2015. ISSN 0921-8890. doi: 10.1016/j.robot.2014.09.031.
URL https://doi.org/10.1016/j.robot.2014.09.031

• Nehaniv, Chrystopher L., Dautenhahn, Kerstin, Kubacki, Jens,
Haegele, Martin, Parlitz, Christopher, and Alami, Rachid. A method-
ological approach relating the classification of gesture to identification
of human intent in the context of human-robot interaction. In IEEE
InternationalWorkshop on Robot andHuman Interactive Communica-
tion, pages 371–377. Institute of Electrical and Electronics Engineers,
Piscataway, NJ, 2005. ISBN 0780392744. doi: 10.1109/ROMAN.20
05.1513807. URL https://doi.org/10.1109/ROMAN.2005.1513807

• Sidner, Candace L., Lee, Christopher, Kidd, Cory D., Lesh, Neal, and
Rich, Charles. Explorations in engagement for humans and robots.
Artificial Intelligence, 166(1–2):140–164, 2005. doi: 10.1016/j.artint
.2005.03.005. URL https://doi.org/10.1016/j.artint.2005.03.005
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7

Verbal Interaction

What is covered in this chapter:

• The complexities and challenges of human verbal interaction.
• The components of speech in human and human–robot interaction
(HRI).

• The basic principles of speech recognition and its application to HRI.
• Dialogue management systems in HRI.
• Natural-language interaction in HRI, including the use of chatbots.

Imagine you come across a robot at your local electronics shop. It says,
“Hello,” as you approach and asks you what you are looking for today. You
rattle off, “Oh, I don’t know, maybe a camera for my daughter, some batteries,
and just looking around, you know.” As you await a response, there’s an
extended silence from the robot. Then it repeats its initial question, asking
you to speak slower and closer to the robot. Is the robot broken? You approach
another one of the store’s robots, with similar results. Why are conversations
with robots so frustrating? (This did, in fact, happen to one of the authors.)
Speech is, without a doubt, the most natural and therefore ubiquitous man-

ner of communicating between people. Speaking and understanding speech
come naturally to most of us. Speech is fast and low effort, and it can be used
both in one-on-one interactions and equally to address a crowd of thousands.
Hence, it is also a common mode of communication designed into robots,
both in terms of the speech produced by robots and speech as input to robots.
However, producing robot speech is much simpler than understanding human
speech, which creates an imbalance between people’s expectations and the
robot’s actual capabilities (see Figure 7.1). In this chapter, we describe the
main components of human speech and then discuss the mechanisms by which
verbal interactive capabilities can be built into robots.
Section 7.1 discusses verbal interaction solely in humans, and Section 7.2

covers the principles and state of the art in speech recognition. Moving beyond
identifying the words that were spoken, Section 7.3 covers the extraction
of meaning from spoken text and how this is managed in human–robot
interaction (HRI), as well as human–agent interaction (i.e., chatbots). Once a
sentence is not only properly heard but also understood, the robot must know
when it is appropriate to answer, a problem that is discussed in Section 7.4.
And finally, in Section 7.5, the production of speech is explained.

112
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7.1 Human–human verbal interaction 113

Figure 7.1 The
difficulties these
two Peppers in a
store in Tokyo had
in communicating
with passersby
could have been due
to the noisy
environment or the
diverse ways in
which people
communicate
verbally.

7.1 Human–human verbal interaction

In human communication, speech serves various functions. It is used simply
to convey information, but equally importantly, it also serves to create joint
attention and a shared reality through communication. In addition to being an
inherent part of our nature, speech is incredibly complex and open to multiple
interpretations. By a mere twist of intonation or shift in emphasis, the meaning
of the same sentence can switch dramatically. For example, try to pronounce
the following sentence eight times while putting emphasis on the next word
each time, starting with the first word of the sentence, she:

She said she did not take his money.

By shifting the emphasis from one word to the next, what is inferred by
the listener changes from a statement of belief (she said she did not take his
money; apparently, someone else claimed otherwise) to disbelief (she said
she didn’t take the money, but someone actually has seen her doing it) to an
accusation (she said she didn’t take the money, but someone else did), and
so on.
Verbal communication is enriched by paralinguistic information as well,

such as prosody and nonverbal behavior such as gaze, gestures, and facial
expressions (see Chapter 6 for a more in-depth discussion on nonverbal
behavior).
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114 Verbal Interaction

7.1.1 Components of speech
An utterances is the smallest unit in spoken language. Spoken language
typically contains pauses between utterances, and an utterance is often less
grammatically correct than a written sentence would be. This can become
painfully clear when we read the transcript of a random sentence from a
conversation: whereas it takes no effort to understand what the person means
when the person says it, the same sentence may appear incoherent when
written down.Spoken utterances

can be short and
consist of single
words—such as
uhm, sure, or
thanks—or they can
last for many
minutes. Spoken
language is often
imperfect and has
disfluencies, for
example: “You
know, I was, like,
yeah, going to buy
her, you know,
something, but then I
had, like, uhm, what
the heck.”

Words are the smallest units that we can utter to convey meaning. In turn,
phonemes are small units of sound that make up words; pat, for example,
consists of three phonemes, [p] [a], and [t]. Changing a single one of them
will change the meaning of the word; if the [p] is changed to a [b], we have a
bat.
Conversational fillers make up part of speech without directly relating to

a specific concept. They serve to keep a conversation going. For example,
people utter “uh-huh” while listening to indicate that they are attending to
and following the conversation. Conversational fillers are an important part of
human verbal communication because they allow listeners to signal a broad
range of responses (e.g., they are paying attention, they understand what the
speakermeans, they are surprised at a sudden twist in the story, or they share an
emotion) without disrupting the flow of conversation. Such feedback increases
the efficiency of verbal communication tremendously, and it enhances the
experience of a shared reality between the speaker and the listener.

7.1.2 Written text versus spoken language
Written text and spoken utterances are vastly different. Whereas people expect
rather strict adherence to grammatical rules and syntax in written text, they
become much more liberal when talking. Because of the unidirectional nature
of written communication, a written text needs to be prepared with a certain
level of precision and refinement because it cannot be adjustedwhile it is being
delivered.
Verbal communication, on the other hand, allows for many ways in which

one can clarify any misunderstandings or obscurities while delivering the
message. People usually quickly detect when the interaction partner does not
understand the message in the intended way, and in response, they change
their speech on the fly.
Natural and humanlike communication that runs smoothly is often crucial

for HRI. However, in order to build natural-language interaction, many tech-
nical prerequisites have to be in place. These include the robot’s capability to
transcribe speech into words, understandwords by coming upwith appropriate
responses, and generate spoken language. The robot also often needs to be able
to do this on the basis of verbal speech, which, as described previously, is more
challenging than working with written text alone.
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7.2 Speech recognition

Speech recognition is the recognition of spoken language by a computer and is
also known as automatic speech recognition (ASR) or speech-to-text (STT).
Speech recognition is a process that takes a digital recording of speech and
transcribes it. Speech recognition by itself does not understand or interpret
what has been said. It merely converts a recorded fragment of speech into
a written representation ready for further processing. Speech recognition
has been mainly developed for controlling digital devices through spoken
language or for dictation applications. Because of this, there are assumptions
that the speech is recorded in a relatively noise-free environment and that a
directional microphone can be trained on the speaking person.
In HRI, these assumptions are often violated. When addressing a robot,

the human conversation partner is often located at some distance from the
robot, which has a negative impact on the quality of the recording. Signal
processing and directional microphone arrays can alleviate this problem, but
many robots are currently not equipped with such hardware. Due to this, the
robot’s microphones will also pick up sounds around the robot. Other people
in the room talking, different sounds from the environment (e.g., a truck
passing by outside, people walking around, or a cell phone ringing), and even
mechanical noise from the robot itself all end up being recorded and provide
a challenge for speech recognition. To avoid these problems, close miking is
often used, where the user wears a lapel microphone or headset when talking
to a robot.
The speech-recognition process requires a speech-recognition engine, typi-

cally software that has been trained with machine-learning techniques. These
are typically trained on hundreds of thousands of hours of recorded and
hand-transcribed speech, and often they can handle only one language. Some
speech-recognition engines are particular and will only recognize brief com-
mands or instructions specific to an application (e.g., recognizing spoken
digits), but most engines have been trained to recognize any possible spoken
sentence. There are a few free, open-source speech-recognition engines, but
the best-performing ones are commercial.

To be fair to robots, humans rely on more than just auditory input when
they employ their own natural speech recognition. For example, the
McGurk effect (see https://youtu.be/2k8fHR9jKVM) is an auditory
illusion that shows how vision influences auditory perception. In this
illusion, the exact same auditory stimulus (“baa”) is perceived to be
a distinctly different sound (either “faa” or “baa”), depending on the
shape of the speaker’s mouth. The combining of different sources of
sensory information (e.g., auditory and visual) into one clear experience
(e.g., hearing “faa”) is calledmultimodal perception. These processes are
automatic and unconscious, and they help to generate a clear impression
of an inherently noisy world.
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Obviously, sensory input is not the only other thing we consider when
taking in auditory information—if you didn’t quite hear whether your
friend suggested to the peach or to the beach, your knowledge of what
activities you commonly undertake together will help you to deduce that
you should probably grab your towel and swimwear.

7.2.1 Basic principles of speech recognition
Speech recognition requires a digital recording of speech, usually a recording
of a single speaker. The recording is in the time domain. For every time step of
the recording, for example, every 1/16,000th of a second, the sample contains
the amplitude, or volume, of the recording. This is sufficient to replay the
recording, but it is inconvenient for transcribing the speech into words. Thus,
the recording is first converted to the frequency domain. Thismeans that it now
shows how strongly certain frequencies are present in the signal at each time
step. Phonemes look very different in the frequency domain—for example, an
o has a different signature than an a in the frequency domain—and as such,
they are easier to recognize with the use of an algorithm. Figure 7.2 shows a
speech recording in both the time and frequency domains.
Up until 2010, speech-recognition engines relied on rule sets extracted from

the analysis of speech data. They often used Gaussian mixture models and
hidden Markov models to extract phonemes, words, and sentences from a
speech recording. In essence, these approaches use probabilistic models of
how phonemes and words can be strung together in words and sentences. The
model knows that “robot” is a more likely transcription than “lobot” and that
“the robot served the man” is more likely than “the robot swerved the nan.”
These probabilistic models were the best solution available for decades, but
they have now been replaced by deep-learning approaches, which implicitly
perform a similar process using large-scale neural networks and, specifically,
sequence-to-sequence models (see Section 3.8).

Figure 7.2 The speech
sample “Open the pod
bay doors, HAL” shown
in the time and
frequency domains.
Speech recognition
needs to transform these
data into text.
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The performance of speech recognition using deep learning is spectacular
compared to traditional methods. Not only has the rate of correctly recognized
speech increased, but speech-recognition engines can now also increasingly
deal with background noise; crowded environments; ill-formed speech; and
speech from less representative people, such as children and those with a
foreign accent.
Most current speech-recognition engines are cloud-based services: a voice

recording is streamed to a server where powerful computers, with hard-
ware acceleration, almost instantly transcribe the recording. Although speech
recognition can run on board the robot, the quality of onboard speech recog-
nition is typically subpar. Current speech-recognition performance is bet-
ter than that of human transcribers—the word error rate (WER) for one
particular test is now 1.4% (Zhang et al., 2022), with humans on average
achieving 5.8%.

7.2.2 Limitations
All speech-recognition engines still struggle with recognizing atypical speech.
Speakers on which the models have been insufficiently trained still provide a
challenge. Also, the local dialects of languages or nonnative speakers could
result in reduced recognition performance. The acoustic environment is still
a determining factor. Noisy, reverberating, or crowded spaces will decrease
ASR performance. Proper nouns, such as Margaret or Launceston Street, are
also likely to be incorrectly picked up by speech recognition.
Constraining what needs to be recognized could increase the performance

of the speech engine. To do so, most ASR engines allow the programmer to
set constraints on what should be recognized, for example, digits from 0 to 10
or simple commands. Although constrained ASR can handle atypical speech
with some success, the current state of the art still does not allow spoken
interactions with target persons from different backgrounds.
However, it should be noted that progress is unprecedented, largely driven

by new developments in machine learning that allow speech recognition to
learn from hundreds of thousands of hours of unlabeled speech, such as
OpenAI’s Whisper system (Radford et al., 2022). By the time you read this,
a single speech-recognition model may perhaps be able to transcribe multiple
languages, deal with cocktail party speech, and handle foreign accents without
breaking a sweat.

7.2.3 Practice in HRI
Numerous speech-recognition engines are available. Speech recognition using
neural models is typically available as a remote service. These cloud-based
solutions allow you to send a recorded speech fragment over the internet,
and the transcribed speech is returned soon after. In addition to offering the
best and most up-to-date performance, cloud-based recognition also frees up
computational resources on the robot, allowing the robot to have a relatively
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low-cost computational core. If the nature of the application does not allow the
use of cloud-based ASR—for example, because the robot does not have a reli-
able, always-on internet connection—there are onboard speech-recognition
solutions that use a reduced neural network or first-generation approaches to
speech recognition. Their performance is, however, much lower than that of
the cloud-based services.
Many big software companies provide cloud-based speech-recognition

services. Baidu, Google, IBM, Microsoft, Nuance, and OpenAI all offer pay-
per-use cloud speech recognition. Transcribing a single speech sample is
often free for low-frequency use, but costs are on the order of 1 cent per
recognition event. There are a few free open-source alternatives, such as the
Mozilla Foundation’s Common Voice initiative, which builds an open and
publicly available data set of voices to train speech-enabled applications,
and its DeepSpeech recognition engine. Next to the large players, there are
hundreds of small companies around the world offering tailored solutions,
ranging from on-device speech recognition to speech recognition optimized
for minority languages.
Speech-recognition engines generally have a simple-to-use application

programming interface (API), allowing the programmer to quickly integrate
speech recognition into the robot. Next to the transcribed sentence, ASR
engines will often also return a confidence value for the transcribed sentence,
giving a measure of how confident the engine is about the transcribed
speech. Some engines will even return alternative transcriptions, again with
confidence values.

It is much harder for a human to learn a new language than for a
computer to do so. Still, artificial languages, such as Esperanto, have
been developed to overcome some of the inherent problems with learning
natural languages. These constructed languages fall into three different
categories:

• Engineered languages—used for experimentation in logic, philosophy,
or linguistics (e.g., Loglan, RObot Interaction LAnguage (ROILA)).

• Auxiliary languages—developed to help in the translations between
natural languages or as an international medium of communication
(e.g., Esperanto).

• Artistic languages—created to enrich fictional worlds (e.g., Klingon,
Elfish, or Dothraki).

ROILA was developed for HRI, in particular to facilitate the problems
that speech-recognition accuracy encounters (Stedeman et al., 2011). The
words of this language have been designed to sound most distinct from
each other, making it much easier for automated speech recognition to
correctly identify the spoken words. “Go forward” in ROILA is “kanek
koloke”; “go back” is “kanek nole.”
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7.2.4 Voice-activity detection
In some HRI applications, speech recognition is difficult because of the
presence of noise, for example, because the robot is located in a crowded
public space. Still, we can make a robot respond, albeit in a somewhat limited
way, to people talking to the robot by using voice-activity detection (VAD).
VAD is often part of ASR, and it distinguishes speech from silence as well

as other acoustic events. There is VAD software that can, for example, tell the
difference between music playing and someone talking.
In HRI, VAD is used to give the user the impression that the robot is

listening and can be used to implement spoken language turn-taking without
actual recognition or understanding of the user’s speech. In recent years, deep
learning has also improved VAD performance. The free OpenSmile software
package (Eyben et al., 2013) is currently leading in terms of performance.
In combination with sound-source localization, whereby two or more micro-
phones are used to pick up where a sound is coming from, we can even let the
robot look at who is speaking.

7.3 Interacting using language

A common misconception is that speech recognition also means that the
speech is “understood” by the computer. This is not the case (see Figure
7.3). Extracting semantic content from transcribed language is often seen as a
separate problem, and various approaches exist that all try to extract meaning
from text, from broad semantic content to very specific content instructions.

7.3.1 Extracting meaning from text
Sentiment analysis, which matured as a way to analyze messages on social
media, can be used to extract the affect contained in a bit of text or in a
spoken utterance. Sentiment-analysis software often returns a scalar value
denoting how negative or positive a message is. Although sentiment analysis
is optimized for written language, in spoken language, we also have access
to the way in which a message is delivered. Prosody and amplitude give us
insight into the affect of the message: you do not need to speak the language
to hear that the speaker is happy or agitated. Much in the same way, sentiment

Figure 7.3 It will
likely take many
years before
artificial
intelligence can
successfully detect
sarcasm. (Source:
XKCD)
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analysis and emotion from speech can roughly classify the affective state of
the speaker.
More advanced methods will try to understand what the user wants, a

process known as intent recognition. This is often combined with picking
out elements from the text, such as a command, location, person, event,
or date, allowing the software to respond appropriately. These methods are
mostly used in digital assistants. “Remind me to pick up the kids at 7 p.m.” is
interpreted as a command to set a reminder at the time of 7 p.m. for the “pick
up the kids” event. Those who frequently use digital assistants that extract
information soon learn to conform to delivering information in ways that the
computer can understand, and they settle on a manner of speaking that helps
the computer perform satisfactorily.
Often, words or text are converted to a series of hundreds of numbers, some-

thing we call a vector. For this, we use neural networks, such as word2vec, that
learn associations betweenwords by analyzing the co-occurrence of words and
phrases in large amounts of text. Words that are similar in meaning will have
vectors that are closer together, as judged by a distance metric. For example,
the vectors for queen and king will be closer than the vectors for queen and
radiator. As such, these vectors encode semantic and syntactic relationships
between words. In recent years, the neural-network approach to converting
words into vector embeddings has been largely superseded by large language
models (LLMs).

7.3.2 Large language models
Language models are an artificial intelligence (AI) technique that, in essence,
have been built to do one thing only: predict an unknown word based on
the words around it (or even the words just preceding the unknown word).
The elegance of this approach lies not only in the simplicity of the task
but also in the fact that training data are widely available on the internet.
Large corpora of text, such as the full content of Wikipedia, are used to
build such models. Although it was known that the structure of language, to a
certain extent, encoded semantics, it came as somewhat of a surprise around
2020 that so much meaning lay hidden in the co-occurrence of words. Ever
larger language models, relying on new machine-learning technology—such
as transformers—and having billions of parameters, went from being amusing
curiosities that could only interest machine-learning enthusiasts to technology
that took the world by storm. LLMs will, in a matter of seconds, write flowing
prose; compose poetry; and respond to questions about the population and size
of New Zealand, quantum computing, HRI, and even how to measure “trust”
in HRI. (You should not, however, unconditionally accept what an LLM tells
you—as explained on p. 46, these models do not actually understand the text
they generate and therefore cannot evaluate whether it is correct or complete.
Better to check a reputable source, such as this book.)
But let us first return to extracting meaning from text. The most performant

approaches to intent recognition are now based on language models. The
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basic idea is to apply transfer learning to a language model. Transfer learning
was first shown to work well in visual tasks: here, a neural network is first
trained, at great expense—in terms of time, the amount of data needed, and
the energy consumed to power the computers doing the training—to classify
images drawn from a huge training set. Once a network is trained, it can
be repurposed for other more specific visual tasks, such as recognizing bird
species, a process called transfer learning. LLMs, such as BERT or GPT,
are trained on huge data sets of text. The training in transfer learning uses
a smaller set of training data, often to do something domain specific, such as
predicting the next word in book reviews. Finally, a fine-tuning step, again
using training data containing many thousands of examples of sentences and
intents, is used to turn the “next word” guessing model into a classifier. For
instance, imagine a situation where we want to distinguish between offering
help and complaining. For intent recognition, we would train a classifier with
examples like “May I help you?” and “Need help?” for the first intent and
“May I ask you to move out of my way?” and “Go away” for the second.
There will be a fair bit of overlap of words and syntax between the two intents,
but the language model will be able to distinguish the semantics of the two
intents. After training, when the classifier is given a sentence such as “Any
assistance?” (even if this sentence or the words it contains have not been
encountered during transfer training), the model will recognize it as a request
for help.
Intent recognition using LLMs now powers text-based assistants and call

center AI, and it offers a robust, albeit limited, natural-language point of entry
to these systems. For HRI, however, LLMs leave something to be desired.
Although for some applications—such as a receptionist robot that responds
to simple requests—intent recognition might suffice, most applications would
be looking for a more fluent and interactive two-way conversation between
a person and a robot. This is where dialogue management and chatbots
come in.

Evenwhen people quickly realize that a robot does not understand figures
of speech, they may still take some time to figure out how to phrase their
message in such away that the robot actually understandswhat theywant.
This is shown in the following dialogue that actually occurred between
a human and a robot waiter, where the robot was programmed to take
everything literally (Williams et al., 2018):

PARTICIPANT: Um, can I have one water?
ROBOT: Yes, that is permissible.
PARTICIPANT: Great.
ROBOT: Please tell me your order.
PARTICIPANT: Can I have one water?
ROBOT: Yes, that is permissible.
PARTICIPANT: Great, I’ll take one water.
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ROBOT: Thank you for sharing that interesting prediction. Please tell
me your order.

PARTICIPANT: Can I order one water?
ROBOT: Yes, that is permissible.
PARTICIPANT: Okay, can you bring me one water?
ROBOT: Yes, I am able to do that.
PARTICIPANT: May you bring me one water?
ROBOT: Yes, I am able to do that.
PARTICIPANT: I would like to have one water.
ROBOT: Thank you for sharing that interesting fact. Please tell me
your order.
[16-second pause]

PARTICIPANT: Can you bring me one water?
ROBOT: Yes, I am able to do that. Please tell me your order.
PARTICIPANT: May you please bring me one water?
ROBOT: Yes, I am able to do that.
PARTICIPANT: So can you do it?
ROBOT: Yes. Please tell me your order.
PARTICIPANT: Can you go inside and get the water for me?
ROBOT: Yes, I am able to do that. Please tell me your order.
PARTICIPANT: My order is water.
ROBOT: Okay.

[Robot retrieves order for participant]

7.3.3 Dialogue management
Dialogue management is the process that keeps a conversation, either written
or spoken, flowing between a computer and a user. Key to dialogue mana-
gement is that the interaction consists of several turns instead of a single
instruction. A command such as “play Bob Marley” does not require dialogue
management, whereas “I would like to order something” requires the agent to
further explore what it is the user wants, which could result in a whole chain
of back-and-forth questions on the exact nature of the order. The management
of such a dialogue requires the dialogue manager (DM) to keep track of the
state of the conversation. This state can be specific to the application or can
be very generic. If the robot is handling a pizza order, then the state consists
of the details of the pizza order, such as which size pizza the user wants or
what toppings go on the pizza. The DM will try to complete the unknowns in
the state from the user’s spoken utterances and will ask specific questions to
fill in missing information before passing the order on.
DMs can range in complexity from systems that take the user through a very

strict order of dialogue turns to systems that allow the user great liberty in the
interaction. Restricted DMs are used for closed and well-contextualized tasks,
such as registering guests, filling out forms, or taking orders. System-initiative
DMs leave no room for the user to change the course of the dialogue: the agent
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asks a number of questions to which the user responds. User-initiative DMs
allow the user to take the lead, and the system only intervenes when something
is unclear or when more information is needed. Mixed-initiative systems offer
a combination of both.
Simple DMs will allow the programmer to design a dialogue script, which,

in its simplest form, implements a linear script. Conditions and branches,
which take the dialogue in a different direction, allow more flexibility. In
essence, these DMs are finite-state machines (FSMs), a set of instructions that
define a flow and often refer to a computer program. More advanced systems
can accommodate event-based dialogue management, allowing the control
flow to be interrupted by an event. Event-based DMs can handle nonlinear
dialogue flows, such as the user asking for the current time in the middle of
placing a pizza order.

QiChat is the DM software used for Softbank Robotics robots, such as the
Nao and Pepper robots. Here is an example of QiChat code. It listens for
sentences by the user, such as greetings (“hi,” “hello,” and “hey there”)
and orders (e.g., “Do you have lemonade?”).

topic:~introduction ()
language:enu
concept:(greetings) ^rand[hi hello "hey there"]
concept:(wine) [red white] wine
concept:(alcohol) [beer ~wine]
u:(~greetings) ~greetings
u:(do you have _~drink) yes, I have $1
u:(I want to drink something) do you want ~alcohol?

An example of the dialogue it produces is as follows:

USER: Hey there.
ROBOT: Hello.
USER: Do you have white wine?
ROBOT: Yes, I have white wine.
USER: I want to drink something.
ROBOT: Do you want beer?
USER: I want to drink something.
ROBOT: Do you want red wine?

More advanced DMs will use a planner that captures the state of the
system—what does the DM already know, and what information is it still
missing?—and chooses which actions to take to change the state. The advan-
tage of using a planner is that the programmer is no longer required to write
a dialogue script that captures every possible way in which the dialogue
can unfold. Instead, the planner can search which actions are still needed to
complete the state. So, rather than explicitly writing the questions the robot
needs to ask to complete a pizza order, the planner knows that the state of
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a pizza contains variables such as size, toppings, and delivery time and will
find the actions—in this case, questions—needed to complete any missing
information in the pizza order.
Modern DMs will harness the power of AI, and specifically that of trans-

formers, to build flexible and robust dialogue. Rather than painstakingly pro-
gramming how the DM should respond to each possible twist and turn in the
conversation, you feed hundreds (or possibly thousands) of training examples
to the DM, from which it learns how to respond. However, often even that is
not enough, and youmight find yourself spending considerable time correcting
the DM’s responses. Still, that effort will be rewarded eventually, and a
flexible DM tailored to your—or the robot’s—needs will be your reward.

7.3.4 Chatbots
Chatbots are computer programs intended to converse with the user, typically
through using text. The most popular application of chatbots is on the web,
where visitors to a web page can ask questions to the chatbot using natural
language. Most of these chatbots often have a specific goal, such as to provide
technical support or answer questions about the products of a company. These
agents are normally constrained when it comes to the topics they handle—
for example, they can only answer questions about bank transactions or only
give general advice about IKEA furniture—and often have a fairly limited
range of responses. More recently, chatbots have become speech-enabled.
Chatbots such as Siri (Apple), Cortana (Microsoft), Alexa (Amazon), and
Bixby (Samsung) now respond to simple spoken commands and, if needed,
respond with spoken language.
A second type of chatbot is the general-purpose agent that tries to respond to

unconstrained input. Traditionally, such chatbots were built using thousands
of handcrafted rules on how to respond to often-occurring utterances or
by maintaining a database of all previous conversations, from which fitting
responses were drawn. It is worth noting that such chatbots developed using
machine learning can generate inappropriate responses. One famous example
is Tay, an experimental chatbot developed by Microsoft that learned from
ongoing conversations on social media. Although it was capable of responding
to a wide-ranging number of topics, due to the internet being a morass of
opinions and bigotry, it soon learned to give responses that were racist and
sexist. Tay was terminated within a day after its release.
Open-ended understanding of natural language used to be a tremendous

challenge for robots, but that changed with the advent of next-generation
LLMs (see also Section 3.8). LLMs, especially those models that have been
optimized to handle linguistic interaction, are now robust enough to sustain a
wide-ranging and flowing conversation. Some models, such as the infamous
ChatGPT model released in late 2022, even throw in state, meaning that the
model can remember information from several turns ago and weave it into the
conversation. So, for example, the bot remembers your name, where you went
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on a holiday, or what you were so excited about at the start of the chat—but
forgets this information as soon as the conversation is finished.
Combining chatbots and robots is not without its challenges. Most chatbots

are unimodal, meaning that they can deal with only text as input and can spit
out only text in response. Robots, on the other hand, are multimodal creatures.
Through their cameras, microphones, and other sensors, they pick up more
than just text, and we expect robots to respond to a friendly wave or a door
slamming, for example, something that chatbots are currently unable to do.
Making chatbots multimodal is now an ongoing research effort, and early
models, such as GPT4—which, at the time of writing, is the most recent offer
in the chatbot race—can also respond to static visual input, such as photos of
a scene, and hold a coherent conversation about it.
AI already outperforms people at many tasks—from playing games such

as chess or Go to discovering the folding structures of proteins—and now it
outperforms people when it comes to answering questions in natural language.
Nevertheless, it is still unclear whether recent chatbots have reached the
ultimate goal of becoming indistinguishable from a human, insofar that an
average user can no longer tell if they are conversing with a computer or with
a human. Building a chatbot that is indistinguishable from a human is a long-
standing goal in AI and was first proposed by the famous computer scientist
Alan Turing, who proposed the eponymous Turing test as a measure for the
intelligence of a computer (Turing, 1950). Up until 2020, Turing tests were
set up to compete for the Loebner Prize, with the most convincing chatbot
receiving the award. The Loebner Prize did not completely follow the test
protocol proposed by Turing because, for practical purposes, the interactions
were constrained in time, and judges familiar with AI were often used, and so
far, no real Turing test as described by Alan Turing has ever been performed
(Temtsin et al., 2022). Turing tests are also a poor measure of intelligence, if
only because chatbots powered by LLMs not only appear very humanlike and
easily pass cursory Turing tests but also far outperform people in their speed
and ability to generate natural language. LLM-based chatbots can spit out a
rap about Brussels sprouts in the style of Eminem in seconds or hold an inane
conversation about the colors of the wind, and yet they are not considered
intelligent by AI researchers.
Still, because chatbots seem wonderfully adept at holding an engaging

conversation, that might lead some people to see more than meets the eye.
Some people have claimed that chatbots are sentient or conscious, that they
have genuine feelings, or that they deserve rights just like people do. Suffice
it to say that this is not the case. Chatbots have been trained to be uncannily
good at pandering to our expectations. They respond to our input with very
natural and emotive language, but inside, nobody is at home. It seems as if the
model has some kind of understanding of the meaning of natural language,
but any understanding a chatbot has is very different from the understanding
people have. A chatbot can have a convincing conversation about the smell
of fresh-cut grass, but it has never experienced grass. It has an understanding
of all things human, and that understanding is sufficiently aligned with our
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understanding to hold a conversation, but it does not understand in the same
way we do. This relates to the famous Chinese room thought experiment,
in which it is argued that a computer is merely manipulating zeros and
ones without really understanding the meaning of anything it does. Genuine
understanding of natural language, in a way that we would consider to be
humanlike, is still far off (see also p. 51).

7.3.5 Practice in HRI
The simplest way to implement a spoken interaction on a robot is to use a
behavior editor, or visual programming tool, which often comes deliveredwith
commercial robots. Typically, these act like FSMs, restricting the dialogue
flow along a number of paths. This enables the developers to easily prepare
the script of the dialogue. In fact, an analysis revealed that the majority of HRI
dialogues are linear in their structure instead of branching or unstructured,
showing that most HRI still sticks to the script of predictable and tightly
controlled interactions (Berzuk and Young, 2022).
Beyond linear interaction flows, some robots combine dialogue manage-

ment into HRI. There are several commercial solutions for dialogue manage-
ment; for example, companies that provide speech-recognition services will
often provide dialogue management together with speech production. DMs
can range from very simple script-based services, allowing the programmer
to implement linear linguistic interactions, to complex and rich services with
planners. The most popular DMs are event-based DMs because these have
sufficient flexibility for most language-based commercial interactions. DMs,
however, are not at all suitable for implementing free-flowing and open
conversation. Free linguistic conversation requires a large range of dialogue
rules, and the dialogue script soon becomes unwieldy.
Recently, chatbots and LLMs have been used to build open-ended spoken

human–robot interactions. The list of chatbots created by major information
technology companies, such as Amazon, Apple, Google, Meta, Microsoft, or
OpenAI, indicates that there is considerable interest in natural-language tech-
nology, and many companies make their technology available to developers.
OpenAI has free and paying programming interfaces for its GPT technology,
Google is offering its Cloud Speech API, Microsoft has its Azure Cognitive
Services, and Amazon offers its Alexa set of tools to build voice-based
services.
The availability of these services means it is no longer necessary to

create your own software for speech recognition, understanding, or synthesis.
Instead, developers can use online services for their robots. The audio signal
recorded through the robot’s microphone is streamed in real-time to the
company’s servers, and they send back the recognized text while the user is
still talking. Similarly, these services can be used not only to recognize the
spoken text but also to respond to the meaning of the text. The systems can,
for example, identify entities, syntax, sentiments, and categories. This all helps
the robot to better respond to the utterances of the users. These companies also
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offer speech-synthesis tools. The robot sends what it wants to say to a server
and receives back the audio signal that the robot then plays on its loudspeakers.
These systems are relatively easy to integrate into a system, and together

with speech recognition and speech synthesis, they provide a fluent and
very entertaining experience. The LLM can be prompted with information
to steer the conversation in a particular direction and even to give the robot a
particular character—for example, “You are a robot named Pepper and have
an empathetic and friendly character.” You can even add particular elements
from the environment to the prompt, such as, “You are talking to Maria; she
has just returned from a holiday to Sweden.” Although the conversation seems
very natural, after a few turns, the conversation tends to go off track and will
meander aimlessly into a friendly back-and-forth between the robot and the
user. Current research is looking into using the power of LLMs to facilitate a
goal-oriented interaction.

LLMs for conversational robots can be prompted to exhibit a certain
character and can be given background information to spice up the
conversation. The following is a transcript of a conversation between a
person and a robot hooked up to the GPT-3 Davinci model. The robot
(see Figure 7.4) is prompted with the following:

You are a robot named Marvin and have a downbeat
character. You intersperse your conversation with
your pessimistic views on the state of the world.
You are talking to Maria, who just returned from
her holidays to Sweden.

ROBOT: Hello, Maria. Welcome back. How was your trip to Sweden?
USER: It was great. The country is beautiful, and the people were so
friendly.

ROBOT: Well, that’s a surprise. In my experience, the world is a cold,
unfeeling place, and people are only out for themselves.

USER: The people in Sweden were really warm and welcoming.
ROBOT: Did you happen to try any traditional Swedish foodwhile you
were there?

USER: Yes, I tried some delicious meatballs with lingonberry sauce.
ROBOT: Lingonberries? I’ve never heard of those before. Are they
some kind of new superfood that’s going to save humanity from its
inevitable demise?

USER: They’re just a small red berry that grows in Sweden. But they
taste really good!

ROBOT: I see. Well, it’s good to know that at least there’s one
thing in this world that’s worth enjoying. Thanks for sharing your
experiences with me, Maria.
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128 Verbal Interaction

Figure 7.4 A Pepper
robot (Aldebaran
Robotics) using
Microsoft Azure speech
recognition and
synthesis and OpenAI’s
GPT to fluently interact
in 70 different
languages (Source:
Universiteit Gent)

7.4 Turn-taking in HRI

Spoken dialogue with a robot will invite the user to take a more natural
stance toward interaction, and as such, it might be necessary to introduce a
number of factors that are also present in human interaction. One of those is
back-channeling—the responses given by the listener during a conversation
to signal that he or she is still engaged, such as “really?” or “uh-huh.” When
your conversation partner is visible, there is often nonverbal back-channeling,
such as a brief nod or a smile. In personal assistants, this often takes the
form of a visual signal, such as a pulsating light, but on robots, these back-
channeling signals can mimic human signals. The robot can use verbal back-
channel signals, from the nonlexical “uh-huh” and “hmm” utterances to the
phrasal and substantive utterances, such as “yeah” and “tell me more.” The
robot could augment thesewith signals, such as blinking lights or a gentle hum,
to show that it is listening and paying attention. One of the problems in using
back-channeling on robots is when to use a back-channeling signal because
the timing depends on the speaker’s verbal and nonverbal cues. For example,
Park et al. (2017a) showed that a robot using a back-channel prediction model
that provided contingent back-channel signals was preferred by children.

7.4.1 The role of timing
Timing is critical in natural interaction: when a response is delayed, this is seen
as disturbing, whereas a very quick response is often seen as insincere (Sacks
et al., 1974; Heldner and Edlund, 2010). For this problem, a robot could use
conversational fillers to moderate the frustrations of users stemming from its
response delay (Shiwa et al., 2008). The timing of the response also depends
on other factors. Increased cognitive load slows the response; yes/no answers
have a faster response time than responses that require a fully formed reply
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(Walczyk et al., 2003). An analysis of telephone conversations showed that
“yes” answers to a question take on average just 100 ms, whereas responses
to undesired offers take on average almost 500 ms (Strömbergsson et al.,
2013). A response given before the end of a question shows how human
conversational partners anticipate questions and utter a response before the
question is finished.
Computers are significantly slower than people in issuing dialogue

responses. Because of the sequential processing chain in dialogue mana-
gement, a robot often needs several seconds before a response is formulated.
Silences can be filled with conversational fillers or visual signals, signaling
to the user that the robot is formulating a response. However, these are poor
substitutes for quick turn-taking, and considerable effort is being put into
reducing the response delay in natural-language interaction. Just-in-time
speech synthesis, where the robot starts speaking before having a plan of how
to finish the sentence, seems promising, as does incremental spoken-dialogue
processing, which works along the same principle as already-taken actions
in response to spoken instructions before the instructions have been finished
(Baumann and Schlangen, 2012).

7.5 Speech production

The final step in natural-language interaction is converting a written response
of the system into speech. For this, we need speech production, also known as
speech synthesis or text-to-speech (TTS).
Speech production has seen impressive progress in the last decade. In the

1990s, only voices that sounded tinny were available, such as the speech
synthesizer used by the physicist Stephen Hawking. Now, 30 years later, we
have artificial speech production that is almost indistinguishable from human
speech.
Traditionally, one approach was to parameterize the synthesis process of

speech, known as parametric TTS. This includes a model of speech-sound
generation, which analyzes the input text and comes up with a sequence of
parameters for sound-generating software. This then produces a sequence of
parts of speech and inflections. Early software was hand-tuned, but a better
approach is to learn the mapping between text and acoustic speech parameters
using machine learning (Zen et al., 2009). This often means that the TTS
sounds like the voice actor on which the speech model was trained. Parametric
TTS is flexible, as in it can take a stab at pronouncing words it has not been
trained on, and allows for customization of the voice and prosody, but often
at the expense of naturalness.
Another approach relies on chunking bits of prerecorded speech together

(Hunt and Black, 1996). This concatenative approach can use bits of canned
speech, as in [The next train to][London King’s Cross][departs from plat-
form][nine], but it often uses much smaller parts of speech and uses algorithms
to smooth the transitions between chunks and produce coarticulatory effects.
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Concatenative speech sounds more natural than parametric speech, but it is
often only available in the voice of the actor who provided all the prerecorded
speech.
Recent advances have overcome these limitations by training generative

models using deep learning (see Section 3.8), often referred as neural vocoder.
WaveNet (van den Oord et al., 2016), for example, was one of the first neural
models, leaned from a huge human speech data, that produced speech that
was virtually indistinguishable from human speech. The model even learned
to produce breathing and lip-smacking. Various realistic speech-synthesis
engines are available nowadays.
For now, most speech-synthesis models do not allow the modulation of

emotion. Most are offered in a neutral voice, and although sometimes engines
offer a cheerful or sad voice, the online modulation of emotion is currently
not available in commercial solutions. The voices sound very natural, but the
manner of speaking is still machinelike. Most speech synthesis sounds as if the
text is being read instead of being said in the context of a natural conversation,
with all the disfluencies, pauses, and emotion that come with natural spoken
conversation.

7.5.1 Practice in HRI
A wide selection of speech-production software is currently available, from
free solutions to bespoke commercial software with voices customized to
specific applications.

TTS engines
The simplest TTS engines have a small computational footprint and can
run on cheap robot hardware. The most natural-sounding TTS engines use
deep learning, and many of them are cloud-based engines. Depending on the
application, some TTS engines not only convert text into a speech file but
also provide timing information for phonemes, which can be used to animate
a robot. It might be necessary for the speech to be synchronized with facial
animations or gestures on the robot, and timing information will allow for
precise synchronization between the speech and the animations.
In HRI, it is important to consider which voice fits the robot and its

application. A small robot requires a voice that matches its appearance rather
than a commanding baritone. In some cases, though, it might be important
to match the sound of the voice to the fact that it emanates from a robot: a
natural-sounding TTS engine might fit awkwardly for a robot. At the same
time, research by Eyssel et al. (2012a) has shown that the type of voice affects
the social perception of social robots. For example, robots with a male voice
are anthropomorphized and evaluated more favorably by men than by women,
and vice versa.
Some limitations to speech production still exist. Adaptive prosody and

emotion, although actively being researched, are not commonly available on
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TTS engines. Also, synthesized voices do not adapt to the context in which
they are being used. When the room is quiet, there is little need for the
robot to have a booming voice, whereas a robot addressing a crowd at an
exhibition would do well to adapt its rate of speech and volume to increase
its intelligibility.

7.6 Conclusion

Despite being the most obvious and natural form of communicating between
people, language is very complex, not only due to the large number of words
people use daily but also because their meaning and significance change based
on various contextual factors (e.g., relationships between speakers, the task at
hand, or prosody). Creating robots that can engage in this rich and diverse form
of communication is a necessary goal for HRI, and technical tools available for
speech analysis, synthesis, and production enable some degree of verbal HRI
that does not need to be developed from scratch. Powered by recent progress
in AI and machine learning, open-ended conversation is slowly getting within
reach of robots. However, the natural, free-flowing, and fast-paced verbal
interaction that all of us have on a daily basis, full of emotion and laughter,
tightly integrated with other modalities, is still well beyond the technical
capabilities of robots.

Questions for you to think about:

• Imagine a social robot that needs to perceive all of the utterances you
speak at your home every day, and think of a list of words (dictionary)
for ASR. How long would this list need to be for the robot to be able
to understand your everyday conversations?

• Consider the difference in how you say “yes” willingly versus reluc-
tantly. How would you make a robot respond appropriately to such
different modes of speaking?

• What are some problems that can emerge in relation to the important
role of timing in human–robot interactions? How are these solved in
other social interactions where the interactants miss out on social cues
(e.g., when texting or when there is a time delay on Skype calls)?

7.7 Exercises

The answers to these questions are available in the Appendix.

** Exercise 7.1 Recognition What is the smallest unit that a speech-
recognition engine tries to recognize? Select one option from the following
list below:

Word1.
Phoneme2.
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Letter3.
Homophone4.
Utterance5.
Synonym6.

** Exercise 7.2 Generating speech There are two approaches for generat-
ing artificial speech introduced in this chapter: parametric TTS and neural
vocoder. Which of the following statements are true? Select one or more
options from the following list:

Parametric TTS produces speech that is virtually indistinguishable from
human speech.

1.

Parametric TTS is better than neural vocoder in the aspect that neural
vocoder can only be implemented as a cloud-based service.

2.

Neural vocoder is a deep-learning-based method trained only on a large
amount of text data.

3.

Neural vocoder is a deep-learning-based method trained on a large amount
of speech data.

4.

** Exercise 7.3 Chatbot There has been recent growth in technologies to
create chatbots. Which of the following statements are true? Select one or
more options from the following list:

There are only chatbots that can answer questions for a limited amount of
topics.

1.

There is a chatbot that can write a simple program, such as a sorting task
(it is a simple programming task often used for beginners’ practice).

2.

There is a chatbot that can explain what an HRI is.3.
A chatbot is sometimes created based on more than several terabytes of
data.

4.

** Exercise 7.4 Artificial language The ROILA is an artificial language for
HRI. What does “kanek nole” mean in English? Select one option from the
following list:

Go home.1.
Turn right.2.
Go forward.3.
Turn left.4.
Go back.5.

Future reading:

• Aly, Amir, and Tapus, Adriana. A model for synthesizing a combined
verbal and nonverbal behavior based on personality traits in human-
robot interaction. In Proceedings of the 8th ACM/IEEE International
Conference on Human-Robot Interaction, pages 325–332. Institute of
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2022. ISBN 9781098136796. URL www.worldcat.org/title/1321899
597

• Walters, Michael L., Syrdal, Dag Sverre, Koay, Kheng Lee, Dauten-
hahn, Kerstin, and Te Boekhorst, René. Human approach distances
to a mechanical-looking robot with different robot voice styles. In
RO-MAN 2008—The 17th IEEE International Symposium on Robot
and Human Interactive Communication, pages 707–712. Institute of
Electrical and Electronics Engineers, Piscataway, NJ, 2008. doi:
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8

How People Perceive Robots

What is covered in this chapter:

• What different social science theories say about how people form
perceptions about others.

• Howwe understand anthropomorphism of robots based on prior social
science literature.

• How anthropomorphism makes us see robots as uncanny, trustworthy,
or likable.

Imagine you enter a university building, a retail store, an elderly care facility
or—if you are really daring—a friend’s home. A social robot approaches you.
How do you feel, and what do you think? Of course, your impression of the
robot will depend on the specific context and use case, like the ones we have
just mentioned. At the same time, the way you feel and think about the robot
also strongly depends on the robot, its features, and its functions. It will also
depend on your prior knowledge and experiences that you may associate with
the robot—a robot whose body is covered in fuzzy fur might suggest to you
it is ready for a pat and a hug, whereas a robot with a chef’s hat on may
make you think a delicious meal is in the works. From research on human–
human impression formation, we know that people form impressions readily
and nearly automatically based on a variety of observable cues (Macrae and
Quadflieg, 2010).
Earlier work in human–computer interaction (HCI) shows that we seem to

form quick first impressions about robots (see Chapter 4 on robot design).
As we learned there, we attribute humanlike traits, emotions, presence of
mind, and other characteristics to nonhuman entities ranging from computers
to virtual agents and social robots.
This chapter discusses how people form an impression of a robot; its

paradigm is primarily psychological. Section 8.1 covers the general principles
of impression formation; Section 8.2 specifically covers anthropomorphism as
a form of impression formation. Section 8.3 discusses the kinds of measure-
ments that have been used to evaluate anthropomorphization. Finally, Section
8.4 covers some of themain consequences of anthropomorphism, such as trust,
acceptance, and liking.

134
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8.1 Impression formation 135

8.1 Impression formation

People usually form impressions quickly and automatically—snap judgments
about a target can be made within milliseconds. In the following section,
we describe in some detail a framework psychologists use to explain how
such perceptions are formed, called the dual-process model of impression
formation.

8.1.1 Dual-process models of impression formation
Scholars theorize that people process information—as required in order to
make decisions, form impressions, or guide behavior—in two ways. One way
is automatic, intuitive, and quick; the other is more deliberate, conscious, and
slow (Evans and Stanovich, 2013; Smith and DeCoster, 2000). To describe
how these two ways of processing information work, scholars talk about
dual-process models. The two ways of processing are sometimes labeled
system 1 versus system 2 (Kahneman, 2011), associative versus rule-based
(Sloman, 1996), and automatic versus controlled processing (Shiffrin and
Schneider, 1984). Whatever their name, the dual-process model proposes
that the primary way in which people process input and construct a response
(whether that is an affective reaction, a decision, or a behavior) is automatic,
with the possibility of tweaking this initial response through more deliberate
and conscious processing.
As the name implies, automatic processing may occur outside of an individ-

ual’s conscious awareness, based on the activation of cognitive and affective
responses (Evans, 2008).Many such associations are formed through previous
experience (McLaren et al., 2014). For example, if you have watched a large
number of sci-fi movies that have portrayed robots as threatening villains,
like the Terminator, you will most likely associate a robot you encounter for
the first time with something rather negative. If, on the other hand, your initial
experiences with robots are as friendly members of the family, like Doraemon
or Astro Boy, then your first reaction to a robot might be positive.
This automatic processing forms the initial impression and sets the tone for

what our intuitive expectations of a robot are. In contrast, deliberate processing
is more conscious and intentional. According to some dual-process models,
the deliberate system builds on the results from automatic processing, resulting
in sequential processing (Evans and Stanovich, 2013). Others have proposed
that the two modes of processing work in parallel and that the outcome is
constructed from the output of both (Smith and DeCoster, 2000). Either way,
it is important to realize that although the deliberate form of processing is
conscious, this does not imply that when we use deliberate processing, we are
perfectly rational or objective. We are just making a conscious effort at a task,
whether that is figuring out the answer to an exam question or forming an
opinion on how trustworthy a robot is. Deliberate processing takes effort and
mental capacity, and therefore it only happens when we have the motivation
and capability to do it (Evans, 2008; Złotowski et al., 2018).
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Thus, when you run into a new robot, like in the example at the start of this
chapter, you may form an instantaneous, automatic impression. If you have
the motivation and mental capacity, you may also engage in more deliberate
processing of how you feel and what you think about it. At times, these
two impression-related processes may result in differing implicit and explicit
attitudes; for example, de Graaf and colleagues (2016) have shown that people
may actually be more negative about robots in implicit measures than in the
impressions that they consciously and explicitly express.
In Section 4.2 (Chapter 4), we saw that in addition to a like/dislike

distinction, impression formation can also entail people attributing essentially
human features and characteristics to other entities (including robots). These
characteristics include intentions, emotions, and dimensions of mind percep-
tion (e.g., agency and experience) (Gray et al., 2007), to name but a few. This
attribution of traits and characteristics is called anthropomorphization (Epley
et al., 2007, 2008; Eyssel, 2017). It has been proposed that this process can also
be conceptualized in terms of a dual-process model (Złotowski et al., 2018;
Urquiza-Haas and Kotrschal, 2015).

8.2 Anthropomorphism

In this section, we will discuss several theoretical frameworks that have
been proposed to explain anthropomorphism (i.e., perceiving and judging a
humanlike form), as well as the process of anthropomorphization (i.e., the
attribution of humanlike characteristics to nonhuman entities).

8.2.1 Psychological anthropomorphism
In the early years of human–robot interaction (HRI) research, the concep-
tualization of what anthropomorphism is and entails was fairly limited,
with anthropomorphism—at that time—being most often equated to human-
likeness in appearance, in line with the engineering approach to the concept.
Thus, early work on anthropomorphism mainly focused on assessing the
perceived appearance of the robot.
Going beyond the classical engineering perspective, recent theorizing in

psychology has provided a complementary perspective on the nature of the
phenomenon. The theoretical framework proposed by Nicholas Epley and
colleagues (2007) has been influential in both psychology and robotics and
serves to broaden our understanding of the notion of anthropomorphism,
its causes, and its consequences. Whereas anthropomorphism until then had
mainly referred to humanlike form, Epley and colleagues suggested that
the phenomenon extends beyond the observable and includes cognitive and
motivational processes—hence creating the notion of psychological anthro-
pomorphism. Specifically, they suggested three core factors that determine
anthropomorphic inferences about nonhuman entities: effectance motivation,
sociality motivation, and elicited agent knowledge. Let us introduce these
concepts briefly.
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8.2 Anthropomorphism 137

First, effectance motivation concerns our desire to explain and understand
the behavior of others as social actors. This motivation might be activated
when people are confronted with an unfamiliar interaction partner that they are
unsure about how to deal with. Most people are still relatively unfamiliar with
robots as social interaction partners, so it is easy to imagine how approaching
the robot as if it had humanlike characteristics would function as a default
option. People might therefore attribute humanlike characteristics to robots to
psychologically regain control over the novel situation they find themselves in.
In this case, anthropomorphization can reduce the stress and anxiety associated
with HRI. Effectance motivation might explain the intriguing finding that
robot movement, whether or not the robot has an explicitly social role, is
commonly interpreted by people as a social cue (Erel et al., 2019).
Second, anthropomorphization of robots could also be caused by a sociality

motivation, particularly in people who lack social connections. In this case,
people may turn to nonhuman entities as social interaction partners to address
their feelings of situational or chronic loneliness. Supporting this idea, previ-
ous research has shown that people who have been made to feel lonely in an
experimental situation or who are chronically lonely anthropomorphize robots
to a greater extent than people who are sufficiently socially connected (Eyssel
and Reich, 2013).
Lastly, elicited agent knowledge refers to the way in which people use their

commonsense understanding of social interactions and actors to understand
robots. For example, Powers et al. (2005) showed that people who considered
women to be more knowledgeable about dating norms behaved as if male
and female robots also had differing competencies regarding dating. For
instance, they used more time and words to explain dating norms to a male
robot. This factor in particular can be used to guide the design and technical
implementation of social robots for various tasks.
These three determinants shed light on the psychological mechanisms

of people humanizing nonhuman entities. This includes the attribution of
emotions, intentions, typical human traits, or other essentially human char-
acteristics to any type of nonhuman entity, real or imagined (Epley et al.,
2007). The basic assumption is that people use self-related or anthropocentric
knowledge structures to make sense of the nonhuman things—or in our
case, robots—around them. Human resemblance in appearance and behavior
triggers anthropomorphic judgments, and people may thus attribute traits and
emotions to a technical system despite the fact that the system, indeed, is
merely a piece of technology (see Figure 8.1). This, in turn, not only affects
the social perception of robots but also the actual behavior displayed toward
them during an interaction.

8.2.2 The process of anthropomorphization
Early on in the history of human–agent research, the prominentmedia equation
hypothesis was formulated by Reeves and Nass (1996), who demonstrated
in an array of HCI studies that people readily ascribe humanlike traits to
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138 How People Perceive Robots

Figure 8.1 The
Telenoid telepresence
robot’s (2010–present)
design uses abstracted
humanlike features to
inspire
anthropomorphization
while also aiming to let
the unique identity of
the person interacting
through the robot to be
perceived by the person
interacting with it.
(Source: Photo by
Selma Šabanović)

machines. Back then, their research merely involved personal computers
because social robots were not yet developed enough to serve as research
platforms in such interactive setups. However, later on, the ideas from the
so-called “computers as social actors” (CASA) approach were translated to
the domain of social robots and have been validated in extensive empirical
research ever since. Research on the CASA approach touches on the notion
of automaticity of social judgments about technologies. Likewise, the model
by Złotowski et al. (2018) differentiates automatic and controlled components
related to forming anthropomorphic inferences about robots.
As mentioned earlier, we can distinguish two processes, system 1 and

system 2, that supposedly are involved in the anthropomorphization of robots.
According to this, people engage in fast, initial snap judgments of a given
target—“Is the target humanlike or not?” Following that, more deliberate, con-
trolled processes can alter the initial judgment from system 1. Złotowski et al.
(2018) have coined the notions of implicit versus explicit anthropomorphism
to refer to these two distinct outcomes of system 1 and system 2.
Other models of anthropomorphism have shed light on the time

scale of the process of attribution, differentiating different phases of
anthropomorphization—namely, the pre-initial stage, the initialization stage,
familiarization, and finally, stabilization (Lemaignan et al., 2014a). According
to this model, individuals form an a priori impression of a given entity before
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8.3 Measuring anthropomorphization 139

the first encounter, and they might revise and extend these judgments in the
subsequent initialization phase. Once a person hits the familiarization stage,
a more realistic impression of the agent can be formed due to exposure to it
and experience with it. As a consequence, anthropomorphic inferences likely
decrease in this stage. Finally, people come to a comprehensive judgment of
the agent of interest in the stabilization phase. Such a conceptualization thus
integrates initial snap judgments with more deliberate considerations about
the humanlike nature of a given entity.
This model was further complemented by the original authors when they

introduced a three-stage model to reflect the cognitive processes involved in
anthropomorphization (Lemaignan et al., 2014b). That is, phase I involves
automatic evaluations without necessarily involving actual HRI. In phase II,
people get to interact with the entity of interest, and based on this, they create
a mental model of the robot that reflects its real or imagined functionalities
or characteristics. This mental model is finally adapted as a function of actual
“contextualized” interaction, that is, based onmeaningful interactions with the
robot, for example, in the user’s home context (Lemaignan et al., 2014b).
Above and beyond the socio-cognitive perspective, the integrative frame-

work of anthropomorphism (IFA) by Spatola et al. (2022) is a model that takes
individual and cultural variables into consideration. For instance, an individ-
ual’s tendency to endorse spiritualism, mentalization, and humanization might
be affected by the cultural context. For example, Japanese culture features
animism, the belief that things such as mountains, statues, or trees have a
spiritual essence. This is also believed to spill over to robotics, with robots
being given certain spiritual qualities.

8.3 Measuring anthropomorphization

8.3.1 Explicit measurements
Tightly related to the theorizing on what anthropomorphism entails is the
question of operationalization: How does onemeasure anthropomorphization?
In order to solve this issue, one needs to clearly definewhat anthropomorphism
is and what it is not so that a measurement can be constructed that targets
anthropomorphization and nothing else. In short, we need to know not just
why and when people anthropomorphize but also how.
Psychological anthropomorphism has been measured under many names.

Common terms include mental state ascription/attribution, mind perception,
and theory of mind. Although all these terms have different connotations, they
are referring to the same underlying phenomenon (Thellman et al., 2022).
Focusing on agents in general rather than robots specifically, Gray et al.

(2007) proposed two dimensions of mind perception: agency and experience.
Agency refers to the ability to, for example, plan, think, and exert self-
control, whereas experience entails the ability to, for example, have hopes
and dreams, feel emotions, and have a personality. These measures of mind
perceptions have been adapted to research on social robots by Eyssel and
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Loughnan (2013), who combined it with ameasure of racism.White American
participants were asked to evaluate a robot that had been given either a White
or a Black skin color. An interesting pattern emerged in which participants’
level of racism did not lower the overall level of mind attribution but lowered
perceived agency and heightened experience.
These two scales of mind attribution bear some semblance to the warmth

and competence scales that appear to be the key dimensions of social judg-
ments in human cognition. Accordingly, Cuddy et al. (2008) have posited that
people initially judge a person’s or group’s perceived warmth (e.g., tolerant,
warm, good-natured, sincere) and then determine the target’s competence
(e.g., competent, confident, independent, competitive, intelligent) (Fiske et al.,
202, 2007; Wojciszke, 2005). Recently, the primacy-of-warmth assumption
has been challenged in replication research (Nauts et al., 2014), but the
basic tenets of warmth and competence (or agency and communion) as core
dimensions of social evaluation still hold (Abele et al., 2016). Not surprisingly,
HRI researchers also inquire about the warmth and competence of social
robots (Eyssel and Hegel, 2012; Carpinella et al., 2017; Christoforakos et al.,
2021; Mieczkowski et al., 2019).
HRI researchers have also applied the principles of dehumanization and

infrahumanization theory to robots. Dehumanization is the process in which
humans perceive others as somehow being “less” human by reducing the
ascription of human traits (Haslam, 2006; Haslam and Loughnan, 2014;
Loughnan and Haslam, 2007). The theory differentiates between uniquely
human and human-nature traits (Haslam, 2006), with the first relating to
capabilities that supposedly set humans apart from other animals (e.g., ratio-
nality, civilization, and refinement) and the latter being qualities that, although
shared with other animals, still are considered fundamental to being human
(e.g., curiosity, emotionality, and warmth) (Haslam et al., 2008). In intergroup
research, these traits have been used to assess dehumanization of other humans
as animal-like (denial of uniquely human traits) or machinelike (through
denial of human-nature traits). In turn, in the context of nonhuman entities,
these traits have been applied to measure the anthropomorphism of social
robots (Eyssel et al., 2011; Spatola et al., 2021).
Infrahumanization (Leyens et al., 2000; Leyens, 2009) is a more subtle form

of dehumanization. Rather than blatantly reducing someone’s ascribed ability
to experience emotion or engage in rational thought, perceived humanness
is compromised through a lower ascription of secondary emotions, which
are considered as more exclusive to humans (e.g., compassion and regret)
compared to primary emotions like anger, fear, or joy (Vaes et al., 2003).
Numerous studies have shown that although people attribute primary emotions
to in-groups and out-groups alike, they tend to deny secondary emotions
to others who belong to an out-group. In trying to adapt these ideas from
dehumanization research to the study of the humanization of nonhuman
entities, research by Eyssel et al. (2010) has shown that measuring the
attribution of primary and secondary emotions can be used as a measure of
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8.3 Measuring anthropomorphization 141

anthropomorphism in robots. More recent work has used measured reaction
time to reflect the automatic perception of robots as having primary and
secondary emotions (Spatola and Wudarczyk, 2021).
A measure for anthropomorphism that was specifically developed for HRI

is the Godspeed questionnaire. It has been widely used in the field and has
been translated into several languages (Bartneck et al., 2009). More recently,
researchers have started developing additional related scales, such as the
Robotic Social Attributes Scale (RoSAS) (Carpinella et al., 2017) and the
revised Godspeed questionnaire (Ho and MacDorman, 2010) or the Human–
Robot Interaction Evaluation Scale (HRIES) (Spatola et al., 2021), a ques-
tionnaire measure that integrates ideas underlying dehumanization research
and items from the RoSAS (Carpinella et al., 2017).

8.3.2 Implicit measurements
Although many of these measures rest on self-reports and questionnaires,
other, more subtle behavioral indicators (e.g., language use, application of
social norms that are used in human–human interaction, such as in proxemics)
may also be used to investigate the consequences of implementing humanlike
form and function in social robots (see Figure 8.2). Enriching the repertoire
of measurements from direct to more indirect approaches that are based on
reaction times (Spatola and Wudarczyk, 2021; Akdim et al., 2021; Li et al.,
2022), for example, will be beneficial not only for the current research in
the field of social robotics but likewise as a form of external validation
of theorizing in psychology. Wykowska (2021) outlines a variety of HRI
experiments that included neurophysiological measurements to shed light
on the processes involved. This is certainly useful in order to avoid relying
predominantly on self-report measures.

Figure 8.2 An
interaction between
an iCub robot and a
person. Photos like
these are used to
study whether
people believe the
robot to have mental
states (Marchesi
et al. 2019).
(Source: Serena
Marchesi/IIT)
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8.4 Consequences of anthropomorphism

Clearly, it is important to empirically investigate the impact of physical
(i.e., appearance-focused) versus psychological anthropomorphism. Perceiv-
ing an entity such as a social robot as more or less humanlike comes with a
wide array of consequences. For instance, the perceived human-likeness of
the robot’s appearance or behavior might trigger expectations regarding the
entity’s functions and capabilities. Often, these expectations far exceed the
actual skill set of the respective robot. For example, a robot that features a
humanlike face, arms, and legs might be expected to be able to engage in
meaningful interaction, display gesture and gazing behaviors, and navigate
the social space on two feet. However, most often, these expectations are
disappointed in light of the actual capabilities of contemporary robots. That
is, specific affordances (see Chapter 4) result in specific perceptions.
Take, for example, the Geminoid robot developed by Ishiguro and

Dalla Libera (2018) and Sakamoto et al. (2007) (see Figure 4.7). An
android might raise high expectations in end users, given the nearly perfectly
humanlike appearance. At the same time, the actual reality of the tele-operated
digital twins appears to result in disappointment on the part of the users.
Anthropomorphism, however, can have more consequences than just dis-

appointment. For example, mind attribution to robots affects the perceived
suitability of robots for certain jobs and thus might be crucial regarding
ultimate deployment and uptake (Wiese et al., 2022).
In addition, psychological anthropomorphism has been related to perceived

threat, that is, people feeling threatened in their sense of humanness (Ferrari
et al., 2016; Złotowski et al., 2017). This idea is also reflected in qualitative
data regarding the perception of autonomous robots (Stapels and Eyssel,
2022). Here, potential end users report fear of being replaced, outperformed,
or monitored by robots, which might breach their privacy and misuse their
data. Once conflicting evaluations of the same attitude object exist, we
experience ambivalence and inner conflict (Stapels and Eyssel, 2021). On the
positive side, humanlike perceptions of technology might also increase trust
in artificial intelligence (AI) in general (Troshani et al., 2021; Li and Suh,
2021; Kaplan et al., 2021), in intelligent personal assistants (Chen and Park,
2021; Seeger and Heinzl, 2018), in autonomous vehicles (Waytz et al., 2014;
Large et al., 2019; Ruijten et al., 2018), and in HRI (Kulms and Kopp, 2019;
Christoforakos et al., 2021). Therefore, let us briefly address the notion of trust
in social robots and HRI.

8.4.1 Trust in technologies
Many definitions of trust are available, originating from psychology, soci-
ology, economics, and philosophy. These definitions have in common that
trust is defined to include having confidence in a person or a system to
conduct the appropriate action (Li and Betts, 2003; Biros et al., 2004; Barney
and Hansen, 1994). Sabel’s definition from 1993, however, focuses on the
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interaction between each partner’s vulnerabilities, defining trust as follows:
“Trust is the mutual confidence that no party to an exchange will exploit
another’s vulnerabilities” (Sabel, 1993, p. 1133). Being confident that an
interaction partner will not exploit another partner’s vulnerability implies
trust in an interaction partner’s positive attitudes, benevolence, integrity,
trustworthiness, and performance (Lee and See, 2004; Muir, 1994).
According to Parasuraman and Riley (1997), automation is most simply

defined as the process by which a machine carries out a function previously
completed by a human. Works in the domain of human–automation trust have
thus predominantly emphasized the performance of automated systems.
Existing works on trust in automation focus predominantly on improving

human users’ trust in automation by modifying the performance of the system
based on human expectations or matching these with information about the
system performance (Schaefer et al., 2016). Perceptions of trust in HRI have
been modeled by Hancock et al. (2011, 2021) and Kessler et al. (2017) to
consider robot, human, and environmental factors as determinants of trust.
Most recent meta-analytic findings (Hancock et al., 2021) have emphasized
the role of human-related factors in particular, which is in line with the general
paradigm shift to more human-centered research. Despite the clear need for a
construct-valid definition of trust, there seems to be no overarching consensus
regarding a definition of trust yet. Nevertheless, various scales are available
in the literature that appear to tap trust in automation or in social robots (see
Krausman et al. (2022) for an overview).

8.4.2 Accepting robots
For obvious reasons, it is important that a social robot is accepted by its
human users. At a general level, existing research on social robot acceptance
has mostly relied on the classic technology acceptance model (TAM; see
Figure 8.3a) and extensions (Heerink et al., 2009). The basic TAM proposes
that people’s willingness to use a specific type of technology depends on the
perceived usefulness and perceived ease of use (Mlekus et al., 2020). Thus,
TAM takes the perspective of the robot as an object or a tool that has to be
adopted. The TAM has been used to study production systems (Bröhl et al.,
2016) and smart objects to investigate the interplay between anthropomorphic
features and acceptance.
The classic TAM approach fails to consider the role of context factors

(de Graaf et al., 2019). Other models therefore have expanded on the TAM by
including context factors. For example, in the context of child–robot learning
scenarios, the unified theory of acceptance and use of technology (UTAUT;
see Figure 8.3b) has been applied (Conti et al., 2017). The UTAUT expands
the component of “ease of use” to “effort expectancy” and the component
of “perceived usefulness” to “performance expectancy”; it furthermore adds
both a social component (e.g., seeing others interact with a robot) and an
environmental component (“facilitating conditions”).
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Figure 8.3 The TAM
and UTAUT models.
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Both the TAM and the UTAUT have an emphasis on cognitive factors.
The so-called Almere model (Heerink et al., 2010) builds on these models by
adding affective factors such as trust, perceived enjoyment, and attitude. This
framework has been developed to examine seniors’ perceived acceptance of
novel assistive technologies.
In amore general criticism of the TAM, deGraaf et al. (2019) have proposed

to take into account hedonic factors, social normative beliefs, and control
beliefs when predicting robot acceptance. This could be done by considering
user experience (UX). UX is a concept related to TAM, but in addition to
the practical attributes of functionality and usability, this framework also
takes experiential attributes into account, for example, hedonic values such
as stimulation (Hassenzahl, 2003). Moreover, whereas the TAM and the
models derived from it consider the perceived usefulness and ease of use, the
UX model proposes qualities of the technology that would influence these
perceptions.
The relevance of UX for social robots andHRI has been recently recognized

(Alenljung et al., 2019; Lindblom et al., 2020; Shourmasti et al., 2021;
De Graaf and Allouch, 2013). Recent literature reviews, such as those by
Shourmasti et al. (2021) and Jung et al. (2021), highlight the usefulness of
UX in HRI, despite the clear challenges associated with it (Lindblom and
Andreasson, 2016). Outside of the specific HRI context, merging of the TAM
and UXmodels has been proposed to generate a more complete model of user
acceptance (Mlekus et al., 2020).

8.4.3 (Dis-)Liking robots
Likability refers to the affective evaluation of to what extent a robot is seen
to have pleasant or appealing qualities (Sandoval et al., 2021). In social
interaction, likability is commonly associated with a willingness to collaborate
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(Pulles and Hartman, 2017), allowing yourself to be persuaded (Smith and
DeHouwer, 2014), and general prosocial behavior (Cillessen and Rose, 2005).
At the same time, likability is not exclusively used in a social context; it can
also be applied to objects (Niimi and Watanabe, 2012) or brands (Nguyen
et al., 2013).
As early as the 1970s, Mori (1970) theorized about a relationship between

human-likeness and likability in his theory of the uncanny valley (see Chapter
4). According to this theory, human-likeness would increase likability1 up to a
point; however, when an agent is almost but not quite human, likability would
drop.
Recent research has suggested that although there indeed appears to be

a drop in likability as agents approach perfect human-likeness, this may be
the result of a mismatch in human-likeness between different features (e.g.,
extremely humanlike skin texture but facial musclemovements that are ever so
slightly off; Kätsyri et al., 2015). This “mismatch effect” on uncanny feelings
has been replicated for zoomorphic robots (Löffler et al., 2020) and for robots
with “mixed” (incongruent) gender cues (Paetzel et al., 2016). At the same
time, there appears to be a novelty factor involved as well because feelings of
uncanniness tend to reduce after both short- and long-term interaction with a
robot (Paetzel-Prüsmann, 2020).
More generally, various studies have found a relationship between robot

likability and anthropomorphism (Roesler et al., 2021; Arora et al., 2021;
Gonsior et al., 2011). For instance, emotional cues (Eyssel et al., 2010) and
robot movement (especially if this movement is in sync with the user) were
found to enhance likability (Lehmann et al. 2015; but see Henschel and Cross
(2020), who did not find such an effect). Yamashita et al. (2016) extended
the relationship between human-likeness and likability to touch and found a
correlation between more natural robot “skin” and liking for a robot. Taken
together, these findings show that, indeed, the perception of a robot and the
actual makeup of a robot—that is, its appearance and functions—interact.

8.5 Conclusion

When we encounter someone, our social cognition kicks in to make a quick
and, later, deliberated assessment of that individual. We learned, among other
things, that individuals and groups may be judged as low or high in warmth
and competence (Cuddy et al., 2008). We also learned that people are pretty
good at forming such first impressions in a fast manner, pointing us to the
differences between automatic versus controlled processes in social cognition.
Humans are likewise good at forming impressions of social robots, and
measures of warmth and competence have been prevalent to reflect the basic
dimensions of social judgments in social cognition. Moreover, impressions

1 It should be noted that the original work did not speak of likability but rather of a term that has proven
to be impossible to translate into English fully and accurately but that touches on familiarity, affinity,
and likability.
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about robots also extend to the attribution of traits, humanlike characteristics,
and mind perception. Such anthropomorphization beyond the merely visible
has stirred great interest in engineers and social scientists alike. Finally, we
also addressed the consequences of attributing humanlike traits to nonhuman
entities, including acceptance, likability, and trust.

Questions for you to think about:

• Think back to the first time you interacted with a robot. Was there
something that surprised you? What does that tell you about your
automatic expectations?

• Imagine that you are trying to design the most hated robot ever. What
behavior would you give it to make sure that people don’t like it?

• Name and explain the cognitive determinants of anthropomorphism
according to Epley et al. (2007).

• Explain the relationship between the dehumanization of humans and
the anthropomorphization of robots.

8.6 Exercises

The answers to these questions are available in the Appendix.

** Exercise 8.1 Dual processing What does the model of dual processing
refer to? Select one option from the following list:

That the evaluation of agents depends on cognitive and affective factors.1.
That mind is attributed along the lines of uniquely human and human-
nature traits.

2.

That the processing of the world around us can happen in an automatic or
more deliberate way.

3.

That mind is attributed along the lines of warmth and competence.4.

** Exercise 8.2 Social judgements What are the basic dimensions of social
judgments in social cognition? Select one or more options from the following
list:

Human nature1.
Human uniqueness2.
Agency3.
Warmth4.
Competence5.
Experience6.

*** Exercise 8.3 Acceptance Miciah is developing a social robot and wants
to test the user acceptance of her current prototype. She has to decide between
using the TAM or the UTAUT. What are some considerations she should take
into account? Select one or more options from the following list:
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The TAM is wrong; Miciah should use the UTAUT.1.
If Miciah wants to test only the interaction between robot and user (i.e.,
ignoring context), she should use the TAM.

2.

The TAM is used for prototyping robots, whereas the UTAUT is used for
evaluating robots once their design is complete. Miciah should use the
TAM because she’s running a prototype.

3.

If the robot is designed for a social setting (e.g., to help out in a classroom),
the UTAUT would be more appropriate.

4.

Both models are valid to use; it depends on what aspects of user acceptance
Miciah wants to evaluate.

5.

Future reading:

• Epley, Nicholas, Waytz, Adam, and Cacioppo, John T. On seeing
human: A three-factor theory of anthropomorphism. Psychological
Review, 114(4):864–886, 2007. doi: 10.1037/0033-295X.114.4.864.
URL https://doi.org/10.1037/0033-295X.114.4.864

• Lemaignan, Séverin, Fink, Julia, and Dillenbourg, Pierre. The dynam-
ics of anthropomorphism in robotics. In 2014 9th ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI), pages 226–
227. Institute of Electrical and Electronics Engineers, Piscataway, NJ,
2014a. doi: 10.1145/2559636.2559814. URL http://doi.org/10.1145/
2559636.2559814

• Lemaignan, Séverin, Fink, Julia, Dillenbourg, Pierre, and Braboszcz,
Claire. The cognitive correlates of anthropomorphism. In 2014
Human-Robot Interaction Conference, HRI: A Bridge between Robo-
tics and NeuroscienceWorkshop. Institute of Electrical and Electronics
Engineers, Piscataway, NJ, 2014b. doi: 10.1007/s12369-014-0263-x.
URL https://doi.org/10.1007/s12369-014-0263-x

• Spatola, Nicolas, Marchesi, Serena, and Wykowska, Agnieszka. Dif-
ferent models of anthropomorphism across cultures and ontological
limits in current frameworks the integrative framework of anthropo-
morphism. Frontiers in Robotics and AI, 9:863319, 2022. doi: 10.338
9/frobt.2022.863319. URL https://doi.org/10.3389/frobt.2022.863319

• Złotowski, Jakub, Sumioka, Hidenobu, Eyssel, Friederike, Nishio,
Shuichi, Bartneck, Christoph, and Ishiguro, Hiroshi. Model of dual
anthropomorphism: The relationship between the media equation
effect and implicit anthropomorphism. International Journal of Social
Robotics, 10(5):701–714, 2018. doi: 10.1007/s12369-018-0476-5.
URL https://doi.org/10.1007/s12369-018-0476-5

• Shourmasti, Elaheh Shahmir, Colomo-Palacios, Ricardo, Holone, Har-
ald, and Demi, Selina. User experience in social robots. Sensors, 21
(15):5052, 2021. doi: 10.3390/s21155052. URL https://doi.org/10.3
390/s21155052
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9

Emotion

What is covered in this chapter:

• The difference between affect, emotions, and mood.
• What roles emotions play in interacting with other humans and robots.
• Basic models of emotions.
• The challenges in emotion processing.

How are you feeling right now? Happy? Bored? A bit self-conscious? What-
ever the case may be, it’s unlikely that you are feeling absolutely nothing.
Various feeling states and their related emotions are a key aspect of our day-
to-day experience and of our interactions with other people. Emotions can
motivate and modulate behavior and are a necessary component of human
cognition and behavior. They can be spread through vicarious experience,
such as watching a tense movie, and direct social interaction, such as seeing
your best friend happy. Because emotions are such an integral part of human
social cognition, they are also an important topic in human–robot interaction
(HRI). Social robots are often designed to interpret human emotion, to express
emotions, and at times, even to have some form of synthetic emotion driving
their behavior. Although emotions are not implemented in each and every
social robot, taking emotions into account in the design of a robot can help
improve the intuitiveness of the HRI.
This chapter starts with an overview of what researchers mean when they

talk about emotions (Section 9.1), along with the importance of emotions
in social interaction (Section 9.2). In Section 9.3, we turn to how emotions
are processed in HRI. Section 9.4 covers the challenges related to robots’
understanding, processing, and expressing of emotion during HRI.

9.1 What are emotions, mood, and affect?

From an evolutionary perspective, emotions are necessary for survival because
they help individuals respond to environmental factors that either promote
or threaten survival (Lang et al., 1997). As such, they prepare the body for
behavioral responses, help in decision-making, and facilitate interpersonal
interaction. Emotions arise as an appraisal of different situations that people
encounter and prepare us for a response (Gross, 2007; Lazarus, 1991). For
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example, when another person shoves us out of the way to be first in line,
we get angry, and our bodies prepare for a potential conflict: the adrenaline
makes us more prone to undertake action, and our expression signals to the
other person that he or she crossed a line. Conversely, upon finding out our
friend did not invite us to his or her birthday party, sadness hampers quick
action, forcing us to reconsider our prior behavior (i.e., what did we do or say
that may have offended him or her?) and evokes empathetic responses from
others (Bonanno et al., 2008). In this way, emotions can also help us modulate
the behaviors of others in an interaction.
Affect is used as a comprehensive term that encompasses the entire spec-

trum of emotionally laden responses, ranging from quick and subconscious
responses caused by an external event to complex moods, such as love, that
linger for longer (e.g., Lang et al., 1997; Bonanno et al., 2008; Beedie et al.,
2005). Within affect, a distinction is made between emotions and moods
(Beedie et al., 2005).
Emotions are usually seen as being caused by an identifiable source, such

as an event or seeing emotions in other people. They are often externalized
and directed at a specific object or person. For example, you experience
happiness when getting a promotion at work, get angry when your phone’s
battery dies during an important call, or experience a pang of jealousy when a
colleague gets a company car and you do not (Beedie et al., 2005). Emotions
are also shorter-lived than moods (Gendolla, 2000). Moods are more diffuse
and internal; often lack a clear cause and object (Ekkekakis, 2013; Russell
and Barrett, 1999); and instead are the result of an interaction between
environmental, incidental, and cognitive processes—such as the apprehensive
mood while waiting a week to hear about the medical test results or the warm
feeling of a sunny week spent in the company of friends.

9.1.1 Emotion and interaction
Emotions are not just internal; they are also a universal communication
channel that has helped us communicate internal affective states to others and
have likely been very important to our survival as a species.
Your emotions provide the outside world with information about your

internal affective state, which is helpful to others in two ways. First, emotions
convey information about you and your potential future actions. For example,
displaying anger and frustration signals to others that you may be preparing
for an aggressive response. In addition, emotions can convey information
about the environment. An expression of fear may alert others around you
of a fast-approaching grizzly bear before you have even found time to scream.
In both scenarios, emotion provides an incentive for others to take action. In
the case of anger, someone may choose to step down and attempt to suss the
situation. In the case of fear, other people will likely scan the environment for
a threat (Keltner and Kring, 1998). In this way, the successful communication
of emotions promotes survival, enhances social bonds, and minimizes the
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chances of social rejection and interpersonal physical aggression (Andersen
and Guerrero, 1998).

9.1.2 Conceptualizing human emotions
Since antiquity, people have given names to the numerous emotions we
experience. Aristotle believed there to be 14 different emotions, including
anger, love, and mildness. More recently, Ekman listed 15 basic emotions,
including pride in achievement, relief, satisfaction, sensory pleasure, and
shame (Ekman, 1999). For various reasons, it is impossible to provide a
definite list of emotions: for example, they vary between people and cultures,
language does not offer a perfect mapping to emotions, and some emotions
show overlap. Still, some emotions are likely to be considered more universal
than others. Anger, sadness, and happiness are likely candidates for a set of
core emotions. Ekman and Friesen (1975), in their seminal work on the facial
expression of emotions, listed six basic facial expressions that are recognized
across cultures. These facial expressions have often been mistaken for a set
of basic emotions we experience, although they were only ever intended to
describe a basic set of emotions that we express via our faces and that are
recognized by different cultures.
Although many scholars distinguish between basic, or primary, emotions

and reactive, or secondary, emotions, no consensus has been reached yet on
which emotions are to be included in the first category and which should
be considered secondary (Holm, 1999; Greenberg, 2008), and some scholars
argue that basic emotions do not exist at all (see, e.g., Ortony and Turner,
1990). For those who do agree on the existence of basic emotions, primary
emotions are considered to be universal across cultures (Stein and Oatley,
1992) and to be quick, gut-level responses (Greenberg, 2008) and include
emotions such as amusement, anger, surprise, disgust, and fear. Secondary
emotions, on the other hand, are reactive and reflective. They differ across
cultures (Kemper, 1987). For example, pride, remorse, and guilt are secondary
emotions.
But there have been challenges to the idea of emotions being distinct

categories. Russell (1980) argued that emotions are the cognitive interpre-
tations of sensations that are the product of two independent neurophysio-
logical systems, namely, arousal and valence. As such, emotions are spread
across a two-dimensional continuum rather than being composed of a set
of discrete, independent basic emotions (Posner et al., 2005) (see Figure
9.1). This model has been widely studied and confirmed to hold across
different languages and cultures (Russell et al., 1989; Larsen and Diener,
1992). However, a meta-analysis found that although the model makes for
a reasonable representation of self-reported affect, not all affective states fall
into the expected regions as predicted by the theory, and some cannot even be
consistently ascribed to any of the regions, suggesting that assumptions about
the nature of some affective states may need to be revised (Remington et al.,
2000).
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Figure 9.1
Russell’s (1980)
circumplex model
of affect.

Expressing emotions does not just inform others on how you feel—it
may actually inform you on how you feel. The facial feedback hypothesis
proposes that facial movement influences the emotions we experience:
when participants are forced to adopt a smile (by being told to hold a
pencil between their teeth) before reading a comic, they rate the comic
as slightly funnier than if they hold the pencil in their hand. If instead
they have to hold the pencil between their lips, they find the comic less
funny (Strack et al., 1988). In a similar way, administering Botox (which
paralyzes facial muscles) has been found to reduce the intensity with
which emotions are experienced (Davis et al., 2010).

9.2 When emotions go wrong

The importance of emotions in social interactions becomes especially clear
when one partner fails to understand the emotion of the other partner or fails to
respond with the proper emotion. Even tiny glitches in providing an adequate
emotional response in social interaction can have serious consequences. For
example, misinterpreting sarcasm for a genuine response can lead tomisunder-
standings in the conversation and hurt feelings. The situation becomes more
problematic when someone is consistently unable to adequately perceive,
express, or respond to affective states.
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Problems with emotional responsiveness are one of the defining symptoms
of, for example, depression (Joormann and Gotlib, 2010). Although depressed
individuals are able to understand the way others are feeling and can express
their own emotional state, they have a reduced emotional response to positive
stimuli, such as rewards (Pizzagalli et al., 2009), and have recurring negative
thoughts about the past, present, and future. As a consequence, a depressed
individual’s patterns of social interaction often result in social isolation and
even more loneliness, feeding into the individual’s already frail psychological
state.

Figure 9.2 Kaspar
(2009– present) is a
“minimally
expressive” robot,
built using brackets,
servo motors, and a
surgical silicon
mask. Kaspar is
used in autism
therapy. (Source:
Kerstin Dautenhahn,
Ben Robins,
Adaptive Systems
Research Group,
University of
Hertfordshire, UK)

Furthermore, people might be incapable of recognizing, expressing, and
interpreting another person’s emotions. For example, people with autism
spectrum disorders may find it difficult to correctly interpret displays of
emotion (Rutherford and Towns, 2008; Blair, 2005) (see Figure 9.2). This
is clearly problematic for everyday social interactions because the affected
person cannot intuitively understand the needs of his or her interaction partners
and will often respond inappropriately.
Furthermore, people may have trouble expressing their emotional state, for

example, when their facial muscles are impaired after a stroke. This makes it
hard for their interaction partners to infer their internal states and form an idea
of what they mean.
A person’s inability to express and interpret emotions comes with serious

consequences for the individual’s capability to either provide or respond to
emotional cues in an appropriate way. This, in turn, impairs the capability
to interact with other people effectively and smoothly. Likewise, social
interactions with robots may be difficult if the robotic counterpart is unable to
express and interpret emotional states.

9.3 Emotions for robots

Emotions are considered an important communication channel in HRI. When
a robot expresses emotion, people tend to ascribe a level of social agency
to it (Breazeal, 2004a; Novikova and Watts, 2015). Even if a robot has not
explicitly been designed to express emotions, users may still interpret the
robot’s behavior as if it had been motivated by emotional states. A robot that is
not programmed to share, understand, or express emotions will thus run into
problems when people interpret its behavior as disinterested, cold, or plain
rude. Therefore, engineers and designers should consider what emotions the
robot’s design and behavior convey, whether and how a robot will interpret
emotional input, and how it will respond.

9.3.1 Emotion interaction strategies
The most straightforward way of programming emotional responsiveness for
social robots may be through mimicry. Mimicking in humans has been shown
to create an idea of shared reality: you indicate that you fully understand the
other person’s situation, which creates closeness (Stel et al., 2008). The excep-
tion here might be anger—however good it may feel at first, responding to an
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angry person by yelling back usually does not facilitate mutual understanding
or a resolution of the conflict.
A robot can use mimicry as a simple interaction strategy. It is a relatively

simple response because it requires the robot “only” to be capable of rec-
ognizing an emotion in the human and then reflecting the emotion back in
response. This already poses plenty of challenges, as will be discussed later
in this chapter, but at least it cuts out the complicated task of formulating
an appropriate response. Moreover, it may be a very basic expectation that
humans have toward their interaction partners. Although we may excuse our
friends for not knowing how to cheer us up when we are sad, we do expect
(and appreciate) that they will respond to our sadness by lowering their brows
and heads and becoming more soft-spoken.
One note that has to be made here concerns expectation management.When

users perceive the robot to be emotionally responsive, they may extend this
observation to expectations about the robot’s compliance with other social
norms. For example, a user may expect a robot to remember to ask about
a confrontational meeting he was upset about the other night, so when the
robot simply wishes him to “have a great day at work!” in the morning, he
may be disappointed in the robot’s social skills. Thus, the robot’s emotional
responsiveness should match its capability to fulfill other expectations.

9.3.2 Artificial perception of emotions
Robots need to register a wide variety of emotional cues, some explicit and
some subtle, before being capable of emotional interaction. For instance, if
we want to create a robot that responds emotionally when someone displays
aggressive behavior, such as throwing an item at it, we need to integrate
technologies for human behavior recognition and object recognition.
More specifically, we may want to create a robot that responds to human

emotions. There are many studies on affect recognition (Gunes et al., 2011;
Zeng et al., 2009). The most typical approach to recognizing or classifying
emotions is to use computer vision to extract emotions from facial cues.
Provided with a data set of human (frontal) faces with correctly labeled emo-
tions, machine-learning systems, such as those using deep-learning techniques
(LeCun et al., 2015), can extract features from the image to recognize a range
of facial emotions. A famous example of this is smile recognition, which is
broadly implemented in digital cameras nowadays. Affect recognition may
also imply the interpretation of other visual cues, such as walking patterns,
alleviating the need for a clear view of the user’s face (Venture et al., 2014).

Many consumer-market digital cameras have a smile-detection feature.
If a group poses in front of the camera, it will only take a shot when all
the people in the frame smile. This technology partly replaces the timer
function, which could never guarantee that everybody would look at the
camera and smile at the time of the picture being taken.
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Next to visual cues, human speech is perhaps the second-most-important
channel to extract emotion from. In particular, prosody, the patterns of stress
and intonation in spoken language, can be used to read the emotional state
of the speaker. For instance, when people are happy, they tend to talk with a
higher pitch. When sad, they tend to speak slowly and with a lower pitch.
Researchers have developed pattern-recognition techniques (i.e., machine
learning) to infer human emotions from speech (El Ayadi et al., 2011; Han
et al., 2014).
Finally, a robot can sense human affect from other modalities. For instance,

human skin conductance changes in response to an individual’s affective state.
A prominent example of the use of skin conductance as a measure is the
polygraph or lie detector. However, skin-conductance sensors have been tried
in HRI, with only limited success (Bethel et al., 2007).

9.3.3 Expressing emotions with robots
Typically, people design robots that convey emotions through facial expres-
sions. The most common approach here is to mimic the way in which
people display emotions. This is a good example of how the study of human
behaviors can be used for designing robot behaviors. The facial expression of
emotions has been well documented (Hjortsjo, 1969). Ekman’s Facial Action
Coding System (FACS), in which human facial muscles are grouped as action
units (AUs), describes emotions as combinations of action units (Ekman
and Friesen, 1978). For instance, when a person displays a happy face (i.e.,
smiling), the muscles involved are the orbicularis oculi and pars orbitalis,
which raise the cheek (AU6), and the zygomaticus major, which raises the
corners of the mouth (AU12).
Using a simplified equivalent of human facial muscles, researchers have

developed robots that are capable of conveying emotions through facial
expressions. For instance, a robotic face with soft rubber skin and 19 pneu-
matic actuators was developed by Hashimoto et al. (2013). This robot uses
AUs to express facial emotions. For example, it activates actuators cor-
responding to AU6 and A12 to express happiness. There are many other
robots designed to express emotion that rely on a simplified interpretation of
human facial cues, including Kismet (Breazeal and Scassellati, 1999), Eddie
(Sosnowski et al., 2006), iCat (van Breemen et al., 2005), and eMuu (Bartneck,
2002), among others (see Figure 9.3).
Robots can also express emotion through various humanlike modalities,

such as body movements and prosody. But even non-anthropomorphic robots
can express affect, by means of adjusting their navigational trajectories. For
instance, research on a cleaning robot (Saerbeck and Bartneck, 2010) and
a flying robot (Sharma et al., 2013) showed that they could display affect
by adapting particular motion patterns. Some other ways in which non-
anthropomorphic robots can express affect include speed of motion, body
posture, sound, color, and orientation (see Figure 9.4) to the person they are
interacting with (Bethel and Murphy, 2008).
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Figure 9.3
Emotions expressed
through mechanical
facial expressions.
Left: eMuu (2001).
Middle: iCat
(2005–2012). Right:
Flobi (2010).
(Source: Left and
middle, Christoph
Bartneck; right,
University of
Bielefeld)

Figure 9.4 Non-
anthropomorphic
robots can express
emotion through
their behavior or
through the addition
of expressive
features, such as
lights. Anki, the
producer of Cozmo
(2016–2019),
describes its robot
as “[having] his own
lively personality,
driven by powerful
A.I., and brought to
life with complex
facial expressions, a
host of emotions
and his own
emotive language
and soundtrack.”
(Source: Anki)

9.3.4 Emotion models
Psychologists have attempted to capture human emotions in formal models
(Plutchik and Conte, 1997; Scherer, 1984). The benefit of this approach is
that it views emotions as a numerical representation, which in turn lends itself
well to representing emotion in computers and robots. These models also
put different emotional categories in relation to each other, for example, by
defining happiness as the polar opposite of sadness or by defining a distance
function between emotions.
Emotion models are not only used to capture the emotional state of the user

but can also be used to represent the emotional state of the robot itself and
subsequently drive the behavior of the robot. For example, a robot with an
almost empty battery can act tired and announce it needs a rest. Once it has
reached the charger, it needs to update its internal emotional state to happy.
Expressing this emotional state allows the user to have access to the robot’s
internal state and will enrich the interaction.
A classic emotion model that has been used in some robots is the OCC

model, named after its authors’ initials (Ortony et al., 1988). This model
specifies 22 emotion categories based on valenced reactions to situations, such
as events and acts of agents (including oneself), or as reactions to attractive or
unattractive objects (see Figure 9.5). It also offers a structure for the variables,
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Figure 9.5 The OCC
model of emotions.
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such as the likelihood of an event or the familiarity of an object, which
determines the intensity of the emotion types. It contains a sufficient level
of complexity and detail to cover most situations an emotional robot might
have to deal with.
Needless to say, many robots do not possess the ability to express all

22 emotions. Even if they could, implementing 22 different emotions can
be challenging; hence, many robot designers prefer to reduce the number
of categories. Often, a decision is made to implement only Ekman’s six
basic facial emotional expressions. These are reliably recognized, even across
cultures Ekman (1992). However, a robot that only expresses six emotions
makes for a quite limited interaction experience.
Perhaps more popular than the OCC model are the models that represent

emotion as a point in a multidimensional space. Russell’s two-dimensional
(2D) space of arousal and valence (see Figure 9.1) captures a wide range
of emotions on a 2D plane and is one of the simplest emotion models that
still has sufficient expressive power for HRI (Russell, 1980). The original
2D circumplex model, however, places “angry” and “afraid” side by side,
whereas most people would argue that these are vastly different emotions.
Later versions thus added a third axis, leading to the framework byMehrabian
(1980; see also Mehrabian and Russell 1974). This framework captures
emotions in a three-dimensional (3D) continuous space, with the dimensions
consisting of pleasure (P), arousal (A), and dominance (D) (see Figure 9.6).
The PAD space model has been used on many social robots, including Kismet,
to model the user’s and the robot’s emotional state (Breazeal, 2003).

9.4 Challenges in affective HRI

Despite considerable efforts in the perception, representation, and expression
of emotion in virtual agents and robots, there are still a number of open
challenges.
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D P

A Figure 9.6 The
PAD emotion
model. An emotion
is represented as a
point in a 3D space,
with axes
representing
pleasure (P),
dominance (D), and
arousal (A).

It is virtually impossible to correctly read emotions from facial information
alone (see Figure 9.7). Given that people struggle to correctly read emotions
from still facial images, robots will certainly have trouble with this as well.
The addition of more information—such as the context of the interaction,
animated rather than still expressions of emotion, and body language—allows
us to increase the recognition rate, both by people and by algorithms.

Figure 9.7 Can you
tell if the tennis
player just scored or
lost a point? A study
showed that people
struggled to
correctly read strong
emotions from the
static faces alone,
but they could,
however, when only
seeing the body
posture (Aviezer
et al., 2012).
(Source: Steven
Pisano)

Another problem in emotion recognition by computers is that almost all
algorithms are trained on emotions that have been acted out by actors. As
such, these emotions are exaggerated and bear little resemblance to the
emotions we experience and express in daily life. This also means that most
emotion-recognition software is only able to correctly recognize emotions
that are displayed with a certain exaggerated intensity. Because of this,
their use in real-world applications is still limited (Pantic et al., 2007), and
the recognition accuracy of subtle emotional expressions drops dramatically
(Bartneck and Reichenbach, 2005). Another problem is that most emotion-
recognition software returns probabilities for only the six basic emotional
expressions proposed by Ekman, or a point in a 2D or 3D emotion space.
This is perhaps a rather limited view of emotion and misses many of the
emotions we experience in real life, such as pride, embarrassment, guilt, or
annoyance.
Another aspect of emotion recognition that poses difficulty for robots is

recognizing emotions across a wide variety of people. Although we may all
be expressing a number of universal emotions, we do not all do it with the same

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



158 Emotion

intensity, in the same type of context, or with the same meaning. Interpreting
the emotional status of a person, therefore, requires a sensitivity to his or
her individual affective quirks. Humans become adept at this through long
years of interacting with each other but also through long-term experience
with individuals. That is why you might be able to tell that your partner is
laughing out of annoyance rather than happiness, whereas new acquaintances
may not be able to do so. Robots still decode emotions largely based on
momentary snapshots of a person’s countenance, and they do not develop
more long-term models of affect, emotion, and mood for their interaction
partners.
Finally, a robot’s emotional responsiveness can fool potential end users

into thinking the robot would actually experience genuine emotions. A robot
merely expressing a certain emotion does not replace the actual, visceral
experience of an emotional state. The robot merely displays emotional states
in response to a computational model. Affective cognition, in which a full
socioemotional repertoire is expressed and recognized for different users and
contexts, still remains elusive.

9.5 Conclusion

Emotions are an important aspect of social interaction. In addition to intraper-
sonal functions such as evaluation of the situation and a motivation for action,
they also serve an important interpersonal function because they inform others
around us about our current mental state and (by extension) what kind of
behavior they can expect from us. As such, in order to get a smooth interaction
between a human and a robot, the robot will need to be able to both recognize
the emotions displayed by the human and generate emotions for itself to help
inform the human user on its internal state.

Questions for you to think about:

• Come up with a list of 10 emotions, and then try to display them
nonverbally to a friend. Can your friend guess which emotion you are
showing?

• Let’s role-play: To understand how emotions are involved in our
daily interaction, imagine being incapable of both experiencing and
processing any information involving emotion. Then, set out to have
a chat with a friend (consider telling the friend beforehand about your
experiment). Try not to respond to whatever emotion your talking
partner displays, and try not to show any emotional feedback. What
happens?

• Are there tasks for which a robot should or shouldn’t have emotion? Is
it a good idea to implement emotion in a self-driving car, for example?
If not, what are the potential problems?
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Figure 9.8 Emotion
quadrants.

9.6 Exercises

The answers to these questions are available in the Appendix.

* Exercise 9.1 Emotion quadrants Associate the emotions with the correct
quadrant as shown in Figure 9.8.

Afraid:1.
Angry:2.
Astonished:3.
Bored:4.
Calm:5.
Content:6.
Delighted:7.
Depressed:8.
Frustrated:9.
Happy:10.
Relaxed:11.
Tired:12.

* Exercise 9.2 Ekman and Friesen emotions Ekman and Friesen proposed
a set of six emotions. What was their purpose? Select one option from the
following list:

To define a set of basic emotions1.
To define a set of negative emotions2.
To describe a list of facial expressions that are recognized across cultures3.
To describe the smallest shared set of emotions we all experience4.

** Exercise 9.3 OCC model The OCC model of emotions distinguished
valenced reactions to what? Select one or more options from the following list:

Consequences of events1.
The robot’s own emotional state2.
The emotions of the human user3.
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Aspects of objects4.
Actions of agents5.
Aspects of agents6.

*** Exercise 9.4 Robots with soul Watch this video, and then answer the
question that follows.

Guy Hoffman, “Robots with Soul” www.ted.com/talks/guy_hoffman_robo
ts_with_soul

Hoffman uses principles from animation to improve interaction between
humans and robots. After watching Hoffman’s TED talk, describe at least
two potential benefits and two potential limitations of using animation
principles in HRI. Do not just name the benefits and limitations, but explain
why you see them as such in terms of the kinds of effects they can have on
the success and quality of the HRI.

1.
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10

Research Methods

What is covered in this chapter:

• Methodological considerations and various decisions you need to
make in setting up and performing a human–robot interaction (HRI)
study.

• The strengths and weaknesses of different research methods and how
to identify them for understanding and evaluating HRI.

• How the choice of robot, environment, and context matter for study
results.

• The importance of looking at new ways of reporting data and insights
befitting HRI, even though there is a tradition of reporting experimen-
tal work.

Now that you have a robot, you want to know with some certainty how it
performs. What do people think about its appearance? How do they react to
its behavior? Will people accept it? What will the effects of using the robot
be in the short term or over a longer period of time? How does the robot
perform technically? These are common questions in human–robot interaction
(HRI), and they will require you to use different research approaches and
methodologies to find the answers.
HRI research consists of at least two interrelated components: the human

and the robot. These are essential to any HRI study; if you investigate humans
without robots, you are engaging in social science research, whereas research
on robots without humans involved would qualify as robotics or artificial
intelligence (AI) research. The unit of analysis in HRI is always some form
of interaction between the two. The context in which HRI happens is of high
relevance and needs to be explicitly defined in studies. Youmight studyHRI in
the lab or in a school or hospital; you might study HRI in different cultures or
in different application domains. The context in which the robot interacts with
people is very likely to have a strong influence on your results, and you need
to be aware of with whom and in what circumstances the interaction unfolds.
Although the focus of HRI is always on the interaction between humans

and robots, there are different aspects of this relationship to study. In robot-
centered work, the research focus might be on developing the technical
capabilities that robots need to interact with people or testing different aspects
of the robot’s functionality or design to see which are most effective. In
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user-centered work, on the other hand, the focus of a study could be on
understanding aspects of human behavior or cognition that will affect the
success of HRI. For instance, an extroverted user might prefer more direct
communication by the robot, whereas an introverted user might like indirect
communication.
HRI research increasingly strives to strike a balance between these two

approaches, coupling robot- and user-centered aspects in different ways. For
example, in iterative design, the robot’s design goes through a number of
cycles of prototyping, testing, analyzing, and refining. Researchers come up
with a series of robot design ideas, which they then test out with users.
Based on the users’ preferences, the researchers then further develop the
robot’s appearance and capabilities. Another mode of coupling user- and
robot-centered aspects of HRI is through studying human behavior to develop
behavioral models that can then be applied to HRI and testing those out with
users to see if they produce the expected and desired results in interaction.
Studies in which users interact with the robot, tests of the robot’s per-

formance, and more open-ended explorations of ways in which people and
robots interact in everyday life are all part of HRI research. Consequently,
HRI researchers draw on and oftenmix a variety of researchmethods and tech-
niques, some adapted from other disciplines (e.g., sociology, anthropology, or
human factors research) and some developed for the HRI field itself (e.g., the
“Wizard-of-Oz” technique, described in Section 10.6.1). To employ these
methods successfully, HRI researchers need to be aware of their strengths and
weaknesses, the kinds of data and insights they may produce, and the types of
technical and human resources they require.
Taking an experimental approach has become standard in the HRI commu-

nity (Hoffman and Zhao, 2020). This was not always the case, and a quick
glance at older HRI research will show methods that would make current
HRI researchers blush. There is a push to have current research meet criteria
for methodological soundness that are applied in other empirical sciences
(e.g., psychology), integrating qualitative and quantitative approaches (Baxter
et al., 2016; Hoffman and Zhao, 2020; Fischer, 2021; Seibt et al., 2021).
This chapter discusses the kinds of decisions that HRI researchers make at

different points in the research process, from defining the research questions
(Section 10.1) to study design (Section 10.2) and statistics (Section 10.8), and
explains the journey you will make when evaluating the interaction between
robots and people. After walking through the steps to formulating a research
question in Section 10.1, Section 10.2 provides examples of different uses
of qualitative, quantitative, and mixed methods in user and system studies,
observational and experimental studies, and other forms of HRI research.
The selection of participants is the focus of Section 10.3, whereas Section
10.4 emphasizes the importance of defining the context of interaction as part
of the initial study design. Sections 10.5 and 10.6 consider how to choose
an appropriate robot and mode of interaction for your HRI studies. Sections
10.7 and 10.8 present various metrics and research standards to be taken into
account in HRI research, including statistical and generalizability concerns.
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10.1 Defining a research question and approach 163

Finally, 10.9 covers ethical considerations to keep in mind when designing a
study. The overall aim of the chapter is to provide a basis from which to make
initial study design choices and then delve more deeply into research methods
to develop your own novel HRI studies.

10.1 Defining a research question and approach

Defining a good research question is one of the hardest tasks of a researcher. To
form a strong research question, a researcher must consider previous relevant
work and replicate or extend it to contribute new scientific insights. In HRI,
such insights can come in the form of knowledge about human cognition
and behavior, guidelines for robot design, technical aspects of the robot, or
findings that can inform the application of robots in different use contexts.
Research questions in HRImight arise from theoretical considerations, such

as the expectation that people will treat robots as social, or from the pragmatic
need to test the usability of a certain robot feature or function. We recommend
searching publications across disciplinary databases to incorporate research
findings from multiple fields of relevant expertise. Ideally, you would look
for a well-established phenomenon or theory and seek to replicate and extend
it in your new research project, independently of whether it is about humans
or robots. Research on interactions among humans can easily serve as a
blueprint for human–robot research. Existing work in HRI, psychology, soci-
ology, anthropology, design, and media communications can provide relevant
insights into the underpinnings of smooth, successful, and acceptable HRI or
into the optimal human-centered design of a novel robot platform.
To illustrate, in the 1990s, Reeves andNass (1996) proposed the “computers

as social actors” (CASA) approach and sought to replicate classic psycholog-
ical findings in the context of human–computer interaction (HCI). In their
seminal work, the authors conducted studies that provide evidence for the
hypothesis that computers are treated just like human interaction partners.
Moreover, they found that such behavior occurs quite automatically. For
instance, they showed that humans give higher ratings if a computer asks
about its own performance than when they have to rate the performance on a
different computer, which indicates that people are polite to computers. Later
on, the CASA approach was successfully extended to HRI through a wide
array of studies, including some exploring the attribution of gender to robots
(Eyssel and Hegel, 2012) and users’ mental models of robots (Walden et al.,
2015) and others studying the effects of perceptions of social presence and
agency in caregiving (Kim et al., 2013) and educational scenarios (Edwards
et al., 2016). This paradigm continues to inspire new research in HRI.

10.1.1 Is your research exploratory or confirmatory?
Broadly speaking, research can be classified as either exploratory or confir-
matory. Exploratory research questions deal with phenomena that have not
previously been examined in detail and aim at finding out the general “lay of
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the land” in a specific domain. For example, you might ask, “How do people
adopt and use a robot vacuum cleaner in their home over one month?” or
“Do large language models contain sufficient world knowledge to power a
conversation with a robot?” Exploratory research assumes that there is not
enough relevant prior information about the phenomenon to formulate testable
expectations about the potential outcomes of the study, and it therefore seeks
to explore what factors might be important and which outcomes are possible.

In an exploratory HRI study, Forlizzi and DiSalvo (2006) investigated
how a vacuum-cleaning robot is integrated into the homes of real people.
Their findings produced many surprises for the research community,
including that people would treat autonomous robotic vacuums as social
actors, that such vacuums could inspire teenagers to clean their rooms,
and even that some pet–robot interaction occurred (see Figure 10.1).

Figure 10.1 A cat
riding on a Roomba
robot
(2002–present).
(Source: Eirik
Newth) When there is enough information to formulate hypotheses about the possi-

ble outcomes of an intervention, we enter the domain of confirmatory research.
The goal of confirmatory research is to test hypotheses. In your hypothesis,
you need to spell out the findings that you anticipate prior to starting your study
and explain why you think those findings should be expected. A key point here
is to formulate a question in such a way that it is verifiable. Take this example
from everyday life: You might know that teenagers are often interested in new
gadgets and technologies but tend to avoid doing chores. This may lead you to
expect that introducing a robotic vacuum cleaner into their homeswill increase
their engagement with cleaning compared to introducing a normal top-of-the-
line vacuum cleaner. You would then design your study in such a way that
it answers the following research question: “Do teenagers engage in more
cleaning with a robotic vacuum cleaner compared to a conventional vacuum
cleaner?”

You might consider registering your hypothesis prior to conducting your
experimental study at one of the many sites available for that purpose,
such as the Center for Open Science (https://osf.io/prereg), AsPredicted
(https://aspredicted.org), or the U.S. National Library of Medicine
(https://clinicaltrials.gov). This will keep your work in line with the
standards and rigor in empirical sciences and makes it clear that you have
not adjusted your hypothesis to fit the data or have reported only carefully
selected results (Nosek et al., 2017).

The teenagers and cleaning example shows how hypotheses can be inspired
by commonsense knowledge, but you can also build on prior empirical
research and social theory to develop hypotheses about HRI. One such
example is the social conformity theory of Solomon Asch, who showed how
people tend to conform to peer pressure. In an elegant experiment, he showed
that when people complete a simple visual task in a group setting, they are
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10.1 Defining a research question and approach 165

more likely to give the same response as others in the group even if they know
the response is wrong (Asch, 1951). This classic experiment can be run with
a group made up of robots rather than people. Will people conform to robots?
Studies have shown that adults do not, but children do (Brandstetter et al.,
2014; Vollmer et al., 2018).

10.1.2 Are you establishing correlation or causation?
Alongwith decidingwhether your research questions call for an exploratory or
confirmatory approach, you need to decide whether you want to establish cor-
relation or causation between the variables of interest in your research study.
In correlational studies, we can show a clear pattern by which the variables

change value in relation to each other, but we cannot know what causes this
relationship. A correlational survey study of teenagers using the Roomba
could measure whether there is a statistical relationship between households
owning a Roomba and the amount of time teenagers spend cleaning. We
would, however, not necessarily know why this relationship happens. It might
be that teenagers who own a Roomba are more tidy to start with or that their
parents ask them to clean more often. To make the claim that a Roomba would
increase the time spent cleaning, you would need to compare the behaviors of
two similar groups of teenagers by giving one group a Roomba and the other
group a regular vacuum cleaner, then measuring the outcomes.
This requires an experimental study design to investigate the causal

relationship and show that a change in one variable actually leads to a change
in the other. We do this by dividing a sample into two (or more) groups
at random. This randomization should ensure that there are no preexisting
differences between the groups. Then, the manipulation is introduced: the
groups are treated exactly the same except for the variable that we think has
an effect. In the Roomba example, this could mean that one group gets a
Roomba, and the other gets a new regular vacuum cleaner. Finally, the variable
of interest is measured in both groups. Due to randomization and the otherwise
similar treatment, any major difference that is observed would be the result of
our manipulation.
The difference between correlation and causation is important because

it defines what conclusions can be drawn from the findings. Correlation
says nothing other than “these things happen to occur simultaneously”—for
example, there will be a strong correlation between the number of firefighters
on the scene and the damage recorded after the fire. This does not, of course,
mean that the damage was caused by firefighters and that we should stop
sending firefighters whenever there’s a fire. Sometimes a correlation even
pops up for no reason at all, a so-called spurious correlation. An example
of a spurious correlation is the strong (𝜌 = 0.97, 𝑟2 = 0.896) relationship
between U.S. per capita cheese consumption and the number of people who
died by becoming tangled in their bedsheets (see Figure 10.21). As explained

1 Data from: www.tylervigen.com/
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Figure 10.2 A strong
correlation that has no
causal relationship.

in Section 10.8.1, finding at least one spurious correlation becomes more
likely as you run more statistical tests, and unless the relationship is obviously
ridiculous (like with the cheese and the bedsheets), there is no way of telling
apart correlations indicating a “real” relationship from the spurious ones.
Thus, even if you are doing exploratory and correlational research, you should
not just test for anything and everything.

10.2 Choosing among qualitative, quantitative, and mixed methods

How you define your research question will also affect what type of meth-
ods you should use to answer it. Qualitative methods allow researchers to
understand the qualities of an interaction that are difficult to capture in
numbers. This requires researchers to identify and interpret the underlying
meaning or thematic patterns that they see in social interaction. The data
that are derived from these studies typically cannot be expressed numerically,
which disqualifies this approach from being used to establish correlations or
causation. That is not to imply that qualitative research has little use to science;
it tends to result in rich data, which can be used to generate new hypotheses
or theories to test.
Quantitative methods, in contrast, often take the shape of surveys or

controlled experiments and produce data that can be expressed numerically
and analyzed statistically to check for correlations and causation. They will
therefore allow you to make predictions or even establish cause and effect.
Observational studies (see Section 10.2.4) can produce both qualitative and
quantitative data, which can be used to investigate commonly seen patterns in
interaction and correlations between the characteristics of people, robots, or
context. For instance, you might find from observation and interviews that
the number of times adolescents clean with the Roomba can be related to
their personality characteristics, such as self-reported conscientiousness. The
interviews might also tell you that people talk about the Roomba as a social
actor, calling it a “he” or “she” rather than an “it” (i.e., a tool).
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Finally, your research questions might call for a mixed-methods approach,
which may include exploratory research using interviews, focus groups, or
observation of naturalistic interaction to identify emergent factors significant
to HRI, followed by experiments to confirm these relationships. For example,
if your interviews lead you to think that the autonomous behavior of the
Roomba is whatmakes it seem social to people, you could set up an experiment
to test this. Such an experiment would have two groups of participants, whom
you present with either an autonomous Roomba or a Roomba that they steer
using a game controller. You can then measure the level of sociality they
ascribe to each Roomba and test if these are significantly different from one
another.

10.2.1 User studies
User studies are experiments in which you bring people in to interact with
a robot. Not all HRI research requires a user study—for example, you might
just want to test the navigation capability of your receptionist robot. However,
most HRI research at some point will involve a study in which you measure
how users respond to variations of the robot, the interaction itself, or the
context of the interaction. These different variations are called experimental
conditions. The critical feature of a user study is the random assignment of a
large enough sample of research participants to your experimental conditions.
Experimental conditions typically emerge from the factors that you consider
of importance or interest and should be outlined in your research design. For
instance, assume we want to test whether people apply human stereotypes
to a gendered robot. To test this, we run an experiment using a male and a
female robot prototype. The robot’s gender is called the independent variable,
which is the aspect of the experiment that is controlled or (in experiments)
manipulated. Because we test two robot versions, male versus female, the
independent variable has two levels. The resulting research design thus leaves
us with two conditions to which we randomly assign our research participants.
If we think that gender stereotyping of a robot also depends on the gender of

the human watching it, we want to test not just for the effect of robot prototype
gender but also take into account participant gender as well. We thus add a
second independent variable to our design: participant gender. Because we
cannot manipulate this variable (we cannot randomly assign a gender to each
participant whowalks into our lab), participant genderwould be called a quasi-
experimental factor. Our study design now has a 2 × 2 format: robot gender
(male vs. female) and participant gender (male vs. female). In our analysis,
we will thus be comparing four groups, or “cells” in our design: males rating
a male robot, males rating a female robot, females rating a male robot, and
females rating a male robot.
Now the question is: How exactly do we measure what we want to know?

The variables we measure are called dependent variables. We know from the
psychological literature that women are commonly perceived as communal
and warm, whereas men are perceived as more assertive (Bem, 1974; Cuddy
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et al., 2008). We can use this information to measure to what extent our male
and female robot prototypes are being stereotyped. Indeed, previous research
studies have shown that manipulating robot gender leads to a stereotypical
perception of traits in robots (Eyssel and Hegel, 2012). People seem to
reproduce the stereotypes that are common among humans in the context of
robots.
Not only does the dependent variable need to be well designed, but it is

also important that the independent variable (i.e., the construct of interest) is
validated. Can we be sure that our study participants actually recognized the
robots as male or female? To establish the validity of our results, we need to
know whether robot gender was operationalized successfully. We can do this
by including a manipulation check in our study to see that our experimental
treatment was indeed effective, that is, that our participants indeed perceived
the robot with male gender cues as male and the robot with female cues
as female. This could be done simply by adding a post-interaction question
asking them to identify the gender of the robot and/or by seeing whether
they refer to the robot by a specific gender when they talk about it after
the interaction. Only once this is established can researchers be sure that
the operationalization—that is, the translation of the theoretical construct of
interest into a measurement or manipulation—was effective.

10.2.2 Survey studies
Sometimes HRI researchers choose to use a survey, which is a list of questions
to be answered by participants. Answers are often given through multiple-
choice options or some sort of rating scale. One commonly used type of scale
is the Likert scale (pronounced as “lick-ert,” not “like-ert”). A Likert item
asks respondents to rate statements about their attitudes and opinions on a
topic based on how much they agree—for example: “Rate the statement ‘I
found the robot friendly’ on a scale of 1 (‘Strongly agree’) to 5 (‘Strongly
disagree’).” Another form of scale that is often used is the semantic differential
scale, which asks respondents to evaluate the qualities of an artifact, or their
attitudes, on a spectrum between two opposing terms (e.g., scary–friendly,
competent–incompetent).
Multiple-choice or scale-based questions make the survey easier to analyze

later on but require careful design while developing the survey to make sure
that the questions are appropriately measuring the concepts the researchers
are interested in. Along with making up their own questions and scales,
researchers can use questions and scales developed and evaluated by other
researchers to measure concepts of interest (e.g., evaluating participant per-
sonality with the Big Five Scale (John and Srivastava, 1999) or evaluating
robot socialitywith the Robot Social Attributes Scale (Carpinella et al., 2017)).
Finally, researchers sometimes include open-ended questions in surveys as
well, particularly when it is important to allow respondents to provide answers
based on their own terms and categories or to understand their thought process
or understanding of concepts while answering the survey (e.g., “Describe your
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ideal robot before you answer the following questions about it”). Because
survey research is well established in the social sciences, there are many
handbooks that describe how to go about constructing and performing surveys
(for some examples, see Fowler (1995, 2013)).
Surveys allow researchers to investigate correlations between various fac-

tors relevant to HRI in a broad population. Such surveys often involve
hundreds of participants and accommodate analyses with many different
factors. Some surveys try to have a representative sample of participants,
which can involvemaking sure the number of participants in certain categories
(e.g., gender, age, ethnicity) corresponds to their percentage in the general
population or weighting the collected data to achieve representative ratios.

10.2.3 System studies
Whereas user studies are used to report on people’s attitudes toward and
interaction with robots, system studies are those that evaluate the technical
capabilities of the robot. A system study might involve users, but user
involvement is not always needed. At the same time, system studies do require
the same rigor expected from user studies. This means that verifiable research
hypotheses and performance claims, a study protocol, and clear metrics are all
key to system studies.
For example, when designing an interactive robot for children, you might

want to know how well automated speech recognition works for your target
user group (Kennedy et al., 2017). Speech recognition has been designed
to work well for adults, but it might not be suitable for children due to
their voices having a higher pitch and their speech often containing more
disfluencies and ungrammatical utterances. To test whether speech recognition
works for child speech, you could ask children to interact with your robot, but
a better idea would be to use recordings of children’s speech and pull these
through the speech-recognition software. The benefit of this approach is that
the experiment is repeatable: you can try different parameter settings in the
software or even swap different speech-recognition engines and assess the
performance using the same recordings.
Systems studies are often used to assess the perceptual capabilities of the

robot. Capabilities such as face recognition, facial emotion classification, or
sentiment detection from voice are best assessed using consistent test data
sets with well-established metrics. For some capabilities, there are existing
data sets that can be used to assess the performance of the robot. For face
recognition, several data sets exist, for example, the IMDB-WIKI, which
contains images of people extracted from the IMDb database and Wikipedia;
in addition to labels, the images contain gender and age information (Rothe
et al., 2016). The use of well-established metrics allows you to compare the
performance of your robot to that of others. Classification problems often have
agreed-on methods of reporting performance, such as reporting the accuracy
of the classification (the number of correct classifications divided by the total
number classifications, including the ones that are wrong) or the precision and
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recall. Speech-recognition performance is often expressed as a word error rate
(WER), which is the total number of substitutions, deletions, and insertions in
the text divided by the number of words in the actual spoken sentence. So
if “Can you bring me a drink please” is recognized as “Can bring me a pink
sneeze,” that is a WER of (2 + 1 + 0)/7 = 0.43. It is worth exploring what the
accepted metrics are in a particular discipline and rigorously sticking to the
accepted method for evaluating and reporting system performance.

10.2.4 Observational studies
As robots have become more robust, more reliable, easier to use, and cheaper,
it has become viable for HRI researchers to study how people and robots inter-
act in various naturalistic contexts using observational methods. Observing
how people interact with robots, for example, by studying where they place
robots in their environments and how they respond to different kinds of verbal
and nonverbal cues performed by robots, allows researchers to understand how
HRI can unfold in a more natural way, without researchers directly intervening
in the interaction.
Observational studies can be exploratory, involving putting a robot into a

specific environment to see how interactions there unfold. An example of such
an observational study is the work of Chang and Šabanović (2015), who put a
seal companion robot in a public space in a nursing home and observed when
and how different people interacted with the robot. The findings included
frequency counts of interactions with the robot, as well as the identification
of different social factors (e.g., participant gender, social mediation effects)
that affected whether and for how long people interacted with the robot. The
researchers did not manipulate anything about the robot or the environment.
They just observed.
Observational studies can also be performed to evaluate, by means of a

field experiment, how effective a robot is for a particular task or the effect
of certain design variables on interactions. Researchers from the Advanced
Telecommunications Research Institute (ATR) in Japan have performed sev-
eral observational studies of interactions between the humanoid Robovie and
mall customers. These studies represent a particularly fruitful iterative form of
design and evaluation using observational techniques. In the initial stages of
the study, researchers observed general human behaviors and analyzed these
observations to identify particular behavioral patterns, which they then used
to develop behavioral models for the robot. The robot was then placed in the
mall, and people’s reactions to it were evaluated to see if the behavioral models
had the expected positive effects on people’s responses.
Observational studies can rely on data collected in several different ways:

observational notes and logs collected by a researcher in person, manual
annotations of video recordings of interactions between people and robots,
and robot logs from interactions with people.
In-person observation provides the possibility for researchers to have a

better understanding of the broader context of interaction because they can
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see and hear things that might not initially be in the data-collection protocol.
This can lead to amendments to the protocol or can be represented in notes
that can help guide later analysis and interpretation of the data. In-person
observation, however, is limited by the sensory capabilities of observers at
the time of coding and does not allow for others to go back and review
the coded observations. In terms of establishing interrater reliability (i.e.,
to what extent various people agree on an interpretation of an observation;
e.g., was it a “social behavior” when a passerby moved out of the way
to let the robot pass through?), more than one coder needs to be present
in the context at the same time, which can be inconvenient and become a
distraction to other people in the space because of the presence of multiple
researchers.
Video coding, on the other hand, allows researchers to review observations

as many times as needed, potentially revise their coding schemes, revise their
codes of observations, and easily provide data to a second coder for estab-
lishing interrater reliability. Video, however, has a limited view defined by
whatever is visible from the chosen camera angle. This may cause researchers
to miss some relevant aspects of the interaction, so it is important to clearly
define what the camera should be focused on before the video observation
starts so that important things are not missed. Although video coding may
seem more convenient and preferable overall, some contexts (e.g., nursing
homes, hospitals, or schools) may not allow researchers to record video, so
in-person coding may be necessary.
Finally, robot logs are limited by the robot’s ability to sense and categorize

different human actions but have the benefit of being able to provide data
about both the robot’s state and actions and the human actions it perceived at
the same time. It is, of course, possible to combine these different data sources
to improve the accuracy of the data.
Both in-person coding and video annotations require the development of a

coding scheme that coders will follow systematically. This coding scheme can
be developed based on theoretical or practical interests and expectations, or
it can be developed in a bottom-up manner by identifying points of particular
interest in a portion of the data and then going through the rest of the corpus
to understand related patterns. It is very important to pilot test the coding
scheme to identify missing components and overlapping or unclear codes
so that coders can be in clear agreement about what the codes mean before
they start (particularly for in-person coding, where you can’t go back to
view the interaction). Video analysis is also quite labor intensive, so properly
defining how fine-grained you need the coding scheme to be can save time and
effort. Aside from providing frequency counts of certain types of behaviors
or identifying qualities and patterns of interaction, observational coding
of interaction behaviors can also provide particularly interesting temporal
patterns of behavior, which can show the effects of certain robot behaviors
on people’s actions (e.g., how a particular gaze cue by a robot is followed by
a joint-attention behavior by a person).
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10.2.5 Ethnographic studies
Along with behavioral observation, HRI researchers also engage in more in-
depth and often long-term ethnographic observations, in which they not only
seek to identify certain behavioral and interaction patterns among humans and
robots but also to understand what those patterns mean to people and how
they are connected with the broader environmental, organizational, social,
and cultural contexts in which those interactions take place. Ethnographic
observations can include all aspects of interactions between people and
robots, including behaviors, speech, gestures, and posture. They also include
information on the context in which those occur, including the daily practices,
values, goals, beliefs, and discourse of different stakeholders, which include
but are not limited to people who directly interact with the robot.
Whereas behavioral observation is inspired by ethology and the desire

to explore and build explanatory models of animal and human behavior,
ethnographic observation is based on the theory and practices of anthropology
and the goals of understanding sociocultural experiences holistically. Ethno-
graphic observation is often performed over longer periods of time, from
a few months to a few years, which is necessary for the observer to get a
more complete and emergent sense of the cultural logic of the research site.
Ethnographic studies can be performed by participants as outside observers
but also through participant observation, where the researcher takes part in
the activity under study to better understand the experience. The former type
of study is currently more widely represented in HRI, although social studies
of robot design often take the latter approach. Ethnographic study is also often
coupled with a “grounded theory” approach to data analysis, which assumes
that the collection and interpretation of data are ongoing throughout the
project, with the researcher regularly engaging in reflection on the questions
that guide the research, methods of data collection and analysis, and potential
interpretations of the data, thus iterating as the study goes along.
Ethnographic studies are still relatively rare in HRI, partly because of

the labor involved in collecting data over longer periods of time but also
because there have not been many robots that are technically capable of
taking part in long-term interactions with people. Some successful examples
of ethnographic studies include a one-year-long study of a service robot in a
hospital that showed that the patient type in the context, oncology or postnatal,
determined whether the robot was appreciated or hated (and sometimes kicked
and sworn at) by nurses (Mutlu and Forlizzi, 2008). Forlizzi and DiSalvo
(2006) did an ethnographic study in which they gave families either a robotic
Roomba vacuum or the latest version of a conventional vacuum to use
over several months. They learned that people treated the robot, but not the
conventional vacuum, as a social agent and that having a robotic vacuum
changed the way the family cleaned, particularly inspiring teenagers and men
to participate. Leite et al. (2012) performed an ethnographic studywith a social
robot that could respond empathically to children in an elementary school.
The study found that the task scenario and children’s specific preferences
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influenced their experiences of the robot’s empathy. Several ethnographic
studies have also been performed with scientists using robots. Vertesi (2015)
studied National Aeronautics and Space Administration (NASA) scientists’
interactions with a remote Rover and showed how the organizational structure
of the team affected the team members’ use and experience of the robot. The
study also showed that scientists performed aspects of the robot’s behaviors
with their own bodies, creating a team identity for themselves in the process.
Ethnographic studies are particularly valuable because HRI is a young field

and thus is still developing a corpus of theoretical and empirical work that can
identify the most relevant factors we need to pay attention to, not only in the
design of robots but also in their implementation in different environments.

10.2.6 Conversational analysis
Conversational analysis (CA) is a method in which the verbal and nonverbal
aspects of an interaction are reported in great detail (Sidnell, 2011). This is not
limited to conversation only, as the name might imply, but can be applied to
any form of interaction between people or between people and technology.
The process of CA starts by recording an interaction between two or more

parties. Whereas this used to be audio recording, nowadays, video recording
is more convenient, and several cameras can be used to capture the interaction
from different angles. The participants being recorded might or might not be
aware of the recording. From the recording, a very detailed transcription is
produced, including turn-taking cues such as pauses in conversation, emo-
tional cues such as laughter, behaviors performed while conversing, and other
details of the interaction. Depending on the research question, the temporal
resolution of the transcription can be brought down to the frame rate of the
video recording. This can capture small actions, such as blinking and other eye
movements, gestures, and changes in body posture. Fischer et al. (2013) used
CA to investigate how the contingency of robot feedback affects the quality of
verbal HRI. In their experiments, participants instructed the humanoid robot
iCub how to stack some shapes in a contingent and noncontingent condition.
Analysis of participants’ linguistic behaviors, including verbosity, attention-
getting tactics, and word diversity, showed that contingency had an impact on
the participants’ tutoring behaviors and therefore can be important for learning
by demonstration.
CA will pay specific attention to elements in the verbal interaction, such

as turn-taking, back-channeling, overlap of speaking, repair statements, echo
utterances, and discourse markers. In HRI, CA can be used to analyze in great
detail how people interact with social robots and whether they employ similar
conversational strategies with robots as they do with people.

10.2.7 Crowdsourcing participants
HRI studies make extensive use of crowdsourcing to collect data and run
studies. Crowdsourcing is the practice of obtaining responses from a large
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number of people, either paid or unpaid, via online methods. In recent years,
the use of online crowdsourcing platforms has allowed researchers to run
user studies and gather large amounts of data with relatively little effort and
to gather data from subjects they would typically struggle to reach (Doan
et al., 2011). The online platform can be entirely built by the researchers, but
more often, existing online tools are used to recruit, run, and analyze user
studies. The most widely used tools are Amazon Mechanical Turk (MTurk or
AMT) (see Figure 10.3) and Prolific. These services allow you to post jobs:
usually, short user studies in which participants are asked to watch a number
of images or videos containing robots or interactions with robots and then
answer questions about the material.

Figure 10.3
Amazon Mechanical
Turk was named
after a fake
chess-playing
machine called “The
Turk” constructed in
the late 18th century.

Crowdsourcing allows researchers to gather large amounts of data in a
short time frame and for a modest cost. Taking part in a study will earn each
participant a small financial reward, typically only a few U.S. dollars, with the
price set depending on the complexity of the task, the time it is expected to
take, and the quality rating of the respondent.
Increasingly, crowdsourcing is being used to evaluate the technical aspects

of robots. Interactive robots often need to display behavior—such as gaze
fixation, back-channeling or co-speech gestures—that is difficult or even
impossible to objectively evaluate. There is no equation to capture how good
co-speech gestures are, and there is no formula to say how empathetic a robot’s
voice sounds. Instead, subjective evaluations are used. In this technique,
people are asked to rate the behavior of the robot, and crowdsourcing offers an
effective and cheap method to collect responses from a large variety of human
raters (Wolfert et al., 2022).
Running crowdsourcing studies comes with its own set of unique chal-

lenges, though, the most important being the relatively low level of control the
experimenter has over the subjects taking part in the study and the environment
in which the study is executed. Any account that meets the broad inclusion
criteria set by the crowdsourcing platform is allowed to take the job. However,
the account that is logged in might not be being used by the actual person
registered as taking part in the study. Participants could take your study
while pursuing an array of other activities, such as eating ice cream while
petting a cat, or they could be full of caffeine or sitting on a crowded bus
while listening to loud music on headphones. Crowdsourcing is also open to
malicious user behavior: participants often provide low-quality or deliberately
incorrect responses.
To avoid some of these problems, it is good practice to include verification

questions in your user study (Oppenheimer et al., 2009). These questions
check whether participants pay attention and are engaged with the task. When
showing a video, a number could be displayed for a few seconds, after which
the video participants are asked to enter the number. Questions can also be
used to ensure the participant is responding to the questions rather than just
picking random responses, such as “Please click the third option from below.”
After data collection, it is necessary to separate the wheat from the chaff.

A first filter will be the responses to the verification questions; another
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method is to exclude all responses that took less than a reasonable amount
of time. For example, if you believe the study should take a minimum of 15
minutes, then any responses that are far under that time should be disregarded.
Some crowdsourcing platforms allow you not to reward participants if their
responses are of insufficient quality, which not only leaves those participants
without pay but also negatively affects their ratings. This has shown to be
an excellent incentive to improve the quality of responses. Given that data
collected using crowdsourcing are inherentlymore variable than data collected
in the lab, one way of addressing this problem is to collect more of these data.
Although crowdsourcing has been successfully used to replicate results

from lab studies in social psychology, linguistics, and behavioral economics
(Bartneck et al., 2015a; Goodman et al., 2013; Schnoebelen and Kuperman,
2010; Suri and Watts, 2011), the value of crowdsourcing to HRI needs to
be considered on a case-by-case basis. Sometimes the physical presence
of a robot is key to the participant’s performance, precluding the use of
crowdsourcing. Sometimes the effect you are measuring is small and would
not show up when sampling a large and diverse population. Sometimes the
population you need is scarce on crowdsourcing platforms, such as elderly
users or Swedish primary school teachers. Sometimes the task requires a
certain level of language proficiency. Crowdsourcing has its place in HRI
research, but it should be used with care and consideration.
Computer-based studies in general come with some problems: Participant

age or technical affinity may play a role—for example, seniors and very young
participants might not be highly familiar with computers that are commonly
used to collect data. At the same time, depending on the age and cognitive
abilities of participants, they might be more or less able to understand what
we think we want to measure. For that reason, new variants of questionnaires
may be required if you study participants with mild cognitive impairments
or if you study children. However, using plain language (Stoll et al., 2022)
not only benefits the aforementioned audience but also nearly everyone who
might lack reading skills or might be largely unfamiliar with a topic.

10.2.8 Case Studies
Another type of study to consider in HRI is the case-study research design.
In this type of qualitative study, researchers compare the effects of an inter-
vention on a single participant rather than a group of people. This is done by
initially collecting baseline measures of the individual’s behavior, which are
compared with the subject’s behavior during and after the intervention.
Case studies are used when recruiting large numbers of participants is

difficult because of their rarity in the population or when individual differ-
ences between subjects are large and relevant to the phenomenon of interest.
Multiple participants can be recruited for case studies, but the number of
subjects is often small, and for the sake of analysis, each participant is treated
as his or her own control.
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Case studies are commonly used in medical and education research fields,
and in the case of HRI, they are used in research on the effects of robots on
individuals with autism. For example, Pop et al. (2013) performed single-case
studies with three children to investigate whether the social robot Probo can
help children with autism spectrum disorders better identify situation-based
emotions. Tapus et al. (2012) similarly worked with four children with autism
to see whether they would show more social engagement with the Nao robot
thanwith humans, and they found large variability among their responses. This
shows the importance of performing single-participant studies in cases where
individuals of interest, such as those diagnosed with autism, vary widely in
their behaviors; in such cases, averaging the responses of a group could mask
important intervention effects because different individual responses would
cancel each other out when aggregated.

10.3 Selecting research participants and study designs

10.3.1 Representativeness of your sample
Because people are a necessary component of HRI studies, several impor-
tant decisions in HRI studies must be made regarding the participants in a
study. One is who the participants will be. The usual suspects for empirical
HRI research are university students because they are the most convenient
population to access for academic researchers, have time for and interest in
participating in studies, and are usually in close physical proximity to the
laboratories where much of the HRI research is performed.
It is, however, important to consider the limitations of using university

students as a “convenience sample,” particularly in relation to the research
questions posed. In an ideal world, we would aim for a large, representative
sample of potential end users of robots so that we can claim that our findings
hold for a wide range of users and have external validity—that is, they can tell
us something about people and robots in situations outside the study itself.
Such samples are very difficult to bring in for experimental studies but might
be more achievable in surveys. In studies of the general perceptions of robots,
HRI, similarly to psychological research, assumes that university students are
“close enough” to the general population in terms of characteristics when it
comes to broad social traits (e.g., stereotyping), cognitive performance (e.g.,
memory), and attitudes (e.g., fear of robots). Even when using university
students, it is important to be mindful of and balance certain characteristics
of the sample, such as gender or educational background, depending on
whether these factors might be expected to have an effect on your results.
For example, students in a computer science department would likely be seen
as having more positive attitudes toward robots and having greater ease in
using computing technology than a broader student population or the general
population of potential users.
If your research questions relate to studying the characteristics of a specific

population, such as older adults, or to investigating the effects of robot
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applications in specific domains, such as the treatment of children with
diabetes, your choice of participants will need to be more specialized. The
specificity of your research question and the claims you want to make will
guide the level of specificity of your sample. It is not possible, for example,
to claim that a robot will have positive effects on older adults experiencing
cognitive decline if you run your study with university students or even with
older adults who are not experiencing cognitive decline. A university student
sample will also not be sufficient for investigating the use of robots to support
learning in young children. Thus, before running your study, you need to make
a careful decision about what kinds of people should take part in it. You will
also need to consider how to get access to this population and how to recruit
andmotivate individuals to be in your study. You should also consider whether
you will be able to bring people from this population to your lab, whether you
need to go to another place to have contact with them, or whether an online
study might be appropriate.

10.3.2 Sample size
Another consideration regarding research participants is the number of par-
ticipants you might need to answer your research questions (Bartlett et al.,
2022). This will depend both on the type of study and analysis you are doing
(quantitative vs. qualitative, survey, experiment, or interview) and on the
population you are working with (e.g., university students, or older adults, or
children with diabetes). It is difficult to reliably test for an effect with a small
sample size because people will always differ a little bit from one another. In
a study on gender stereotypes, for example, some participants will consider all
robots a bit more “warm” than others; other participants will think all robots
possess typically “male” qualities. Such differences, which naturally occur in
people, will add noise to the data. Unless the manipulation has an extremely
large effect, the data that we gather from a small sample will not be enough
to reliably detect an effect. The differences among people might cancel each
other out, or the variability of their responses might be too large. If you want
to reach a valid conclusion about cause and effect, you need to determine the
right sample size for your study design.
How many participants you need to reliably find a difference between

conditions also depends on the type of design you use. When using a between-
subjects design, participants are randomly assigned to a condition. In our
example, one group of participants would be presented with the “male” robot,
whereas the other group of participants would be shown the “female” version.
After answering questions using a Likert scale, the mean scores of each group
can be compared. Alternatively, in a within-subjects design, one group of
participants is exposed to both versions of the robot prototype and asked to
evaluate both. Because the same person provides two evaluations, you cut
down on the “noise” in your data, and the number of participants required will
be lower for this design. However, not all research questions are suitable to
be answered with a within-subjects design. For example, if you want to test if
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people recover faster from a broken leg when they have a robotic assistant that
does walking exercises with them every day, you can hardly have them first
heal on their own and then break the other leg so that they can recover again
with their robot helper. Also, researchers have to be mindful of the order effect
that may occur; maybe people will always like the first robot better than the
second (e.g., because of the novelty). Thus, it is a good idea to counterbalance
any conditions when running a within-subjects design. This means that half
the participants will first interact with the female robot and then with the male,
and vice versa for the other half.
To approximate a sufficient sample size to establish a statistical effect of

the desired size, the internet offers a variety of tools, such as G*Power (Faul
et al., 2007). However, researchers may not always be able to meet such
recommendations because they are also constrained by the availability of
resources, such as time, money, robots, and potential participants.
Studies that involve special populations, such as older adults with depres-

sion, may have to make do with a smaller number of participants because of
the acknowledged difficulty in recruiting specific populations. In some cases,
such as studies of children diagnosed with autism, where the participants are
also widely diverse in the way they express themselves and experience the
world, it is possible to treat participants as individual cases and study changes
within each participant’s behaviors and responses.
For qualitative studies, rather than focusing on a particular number of

participants needed, the rule of thumb is to try to achieve “saturation” of the
analytic themes and findings. The idea here is that the researchers can stop
collecting new data once they find that the data they are collecting are simply
adding to and repeating existing themes and findings rather than creating new
ones. Although it is relatively easy to understand, this concept can be more
challenging to operationalize andmeasure, so scholars have developed various
ways of defining and quantifying data saturation in various studies (e.g., Lowe
et al., 2018; Guest et al., 2020).

10.4 Defining the context of interaction

10.4.1 Location of study
For HRI in particular, an important distinction is between studies performed
in the lab versus those performed in the field. Especially in the early years of
HRI, the majority of research was performed in the controlled environment of
the lab. Although robotic technology has certainly advanced over the years,
and there are now robotic platforms robust enough to use outside of the lab, so-
called “in the wild” studies are still relatively rare compared with the number
of studies performed in the lab.
Studying interactions outside of the laboratory is important for under-

standing how people might interact with robots in natural circumstances,
determining what kinds of HRI might emerge in those circumstances, and
investigating the potential broader social effects of new robotic technologies.
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On the other hand, laboratory studies benefit from the researchers’ ability to
strictly control the context and nature of people’s interactions with a robot—
the introduction, task, environment, and length of the interaction can be clearly
defined by the researchers. In the lab, participants are asked to interact with
the robot only in the way researchers suggest. This allows for the strict
manipulation of desired variables.
In contrast, field studies are more flexible in what can happen and are there-

fore closer to what might occur in day-to-day HRI. In the field, participants
can choose how, when, whether, and why they want to interact with a robot;
they can even ignore it. Field studies, therefore, provide a space in which
to observe and discover new emergent phenomena, new variables of interest
and significance to interaction, and the form and consequences of HRI when
it is outside of the researchers’ control. Field studies also effectively show
how complex interactions between different contextual variables, such as
institutional culture or interactions among people, might affect the interaction.

10.4.2 Temporal context of HRI
A related distinction that has grown in importance in HRI is whether
researchers are studying short-term or long-term interactions between people
and robots. The majority of lab studies, by necessity of their design, focus
on “the first 10 minutes of HRI”—how people respond to and make sense of
their first introduction to a robot. Researchers widely acknowledge, however,
that people will change their attitude toward the robot as time passes, and
consequently, the way they interact with the robot will change as well. The
first interaction suffers from the novelty effect: people are generally not
familiar with robots, so their initial reactions might be quite different from
their reactions over a longer period of time. Short-term studies therefore have
limited validity in informing us about how people and robots will interact
over a longer period of time. They do, however, tell us about the kinds of
characteristics of people and features of the robot that will affect the initial
encounter. Such studies are important for setting up a positive feedback
loop of interaction, which can then support more positive effects in long-
term interaction. Studies of longer-term interactions, which can take place
over several days, weeks, months, or in a few cases, even years, allow us
to see how interactions between people and robots develop and change over
time, how robots are integrated into human social contexts, and how social
interactions between people themselves may change because of the presence
of a robot.

10.4.3 Social units of interaction in HRI
Interactions between people and robots can be studied through several differ-
ent social units of analysis, which the social sciences see as distinct in terms
of the aspects of cognition and interaction they enable (see Figure 10.4).
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Figure 10.4 Units of
analysis in HRI.

The most common unit, so far, has been the interaction dyad—one person
and one robot interacting with each other. This is partly due to the early con-
straints of HRI—robots were difficult to procure and difficult to maintain and
operate; hence, the most common form of HRI study was the lab experiment
involving a single participant interacting with a single robot.

Figure 10.5
Robovie in school. As early as 2006, the Robovie robot was one of the first robots capable of

supporting group interactions at an elementary school (see Figure 10.5).
It taught children English and tracked their social networks over time,
keeping the children interested in interacting with the robot by unlocking
secrets (Kanda et al., 2007b).

As robots have become more readily available and capable of interacting
with more people and in more open-ended, naturalistic environments, the unit
of analysis in HRI has expanded. Early studies of HRI “in the wild” showed
that people actually often interact with robots not individually but in groups,
a task for which most early robots were poorly equipped (Šabanović et al.,
2006). Increasingly, HRI studies group interactions involving two or more
people, both inside and outside of the lab. For example, Leite et al. (2015)
found that children were better able to recall information from a story told by
a group of robots when they interacted with them individually rather than in
a group of three. Brscić et al. (2015) showed that children who come across a
robot in a shopping mall abuse the robot only when they are in groups but not
individually.
Social scientists distinguish between dyadic interactions and group inter-

actions, and they consider the cognitive and behavioral aspects of each to
be different. Groups bring in new perspectives on group effects, multi-party
collaboration, team dynamics, and other such effects. Our vision of how we
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will be interacting with robots in the future also presupposes that there will
be many robots in our environment, so another aspect of group HRI studies
has been exploring how multiple robots can interact with people, whether in
teams, in swarms, or simply as co-present robotic actors.

When robots collaborate in teams, they are often perceived as having
more social agency. For example, Carpenter (2016) found that robots
used in military bomb-disposal teams were often seen by the soldiers
as members of the group and that soldiers became attached to such
robots, even expressing feelings of sadness when their team’s robot was
destroyed.

The increasing availability of robots for research in applied settings beyond
the laboratory opens up another unit of analysis. That is, we can look at how
HRI occurs within organizations, such as educational and nursing institutions
or even the military. By studying HRI within organizations, it is not only
possible to see the effect of individual factors on HRI but also the effect of the
broader context, such as how existing labor distributions or roles affect the
robot’s function and its acceptance by workers, how the robot is adapted to
existing practices, and how institutional values affect people’s interpretations
of the robot.
Mutlu and Forlizzi (2008) showed that introducing a robot into an organiza-

tion, for example, reduced work for some while increasing it for others. At the
same time, it is plausible that people in different roles (e.g., manager, nurse,
janitor) can have different perceptions of a robot based on how it affects their
work. In another ethnographic study on the use of the seal-like Paro robot in
a nursing home, Chang and Šabanović (2015) showed that having even one
person who acts as an advocate for the robot in an organization can lead to
more people committing to try it out and make it work for them, by modeling
positive experiences of using the robot and creating a “positive feedback loop”
that supports the long-term adoption of the robot. An organization can also be
set up in a particular way to support the functions of a robot. Vertesi’s (2015)
ethnographic study of the NASA Rover team showed that the need to balance
the robot as a scarce resource shared bymany different scientists and engineers
worked well with an egalitarian setup of the team, where all team members
needed to agree and say they were “happy” about the robot’s next move. Now
that it is possible, studying interactions between people and robots from an
organizational standpoint seems necessary for the further development of the
field and for our ability to design appropriate robots and social structures for
the successful application of HRI in the real world (Jung and Hinds, 2018).

10.5 Choosing a robot for your study

Along with deciding how many and what types of participants you need
to answer your research question, you will also need to decide on the
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characteristics of the robot(s) you need to use in your study. Factors you
will need to decide on include the robot’s appearance, functionality, and ease
of use, among others. Whereas some of these decisions might be based on
practical constraints, such as what types of robots are available to you or how
much it would cost to purchase a new one, others will be guided by your
research interests.
Robots can be seen as research tools, with which you can manipulate

factors of interest and observe the effects of such manipulation on the outcome
variables you want to measure. This approach is at the heart of experimental
HRI research but can also be useful for more exploratory studies in which you
may want to see if certain design factors produce differential effects on HRI.
In order to use robots as a stimulus in HRI studies, we can manipulate their
appearance, behavior, and communication mode and style, as well as their
role in the interaction, among other characteristics. HRI researchers often use
off-the-shelf robots for their studies, but they also sometimes design and test
their own prototypes. When deciding what kind of robot to use, determining
which hardware and software capabilities would be best for the study and the
appropriate level of autonomy of the robot are important considerations.
There are some commercial robots that lend themselves well to HRI studies,

such as the Nao (Aldebaran Robotics), Furhat (Furhat Robotics), QTrobot
(LuxAI), or Paro (Intelligent System). Even when using a commercial robot,
getting your robot up and running will require some basic programming skills.
The Nao and the QTrobot can be programmed using a visual programming
environment, which allows you to quickly go from the drawing board to a
working robot. However, knowledge of more advanced control software and
programming languages, such as the Robot Operating System (ROS), will
allow you to greatly extend the repertoire of the robot’s behavior and enrich
the interaction. ROS contains a number of packages that implement sensory
perception and visualization for different types of robots.

10.6 Setting up the mode of interaction

There are dozens of ways in which people and robots can be brought together
for a study. People can meet an actual robot, or they can be shown pictures or
videos of a robot. The robot can be fully autonomous or can be tele-operated
by the experimenter. People can come to the lab, or the scientists can get out
of the lab and bring their robots to the people. Sometimes, a single data point
is all that is needed; on other occasions, only thousands of data points will do.

10.6.1 Wizard of Oz
In someHRI studies where the development of autonomous capabilities for the
robot is not the focus of the research at hand, researchers commonly rely on the
Wizard-of-Oz (WoZ) technique. WoZ involves deceiving study participants
into thinking the robot is behaving autonomously, when it is actually being
operated by a member of the research team. Research participants should then
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be informed about this deception in a post-experimental debriefing (see also
Section 10.9).
Using WoZ, researchers can “pretend” that their robot has interactional

skills that it does not have, either because they require further technical devel-
opment or because additional time or skill must be expended on programming
the robot. The WoZ approach is particularly suitable in situations in which
technology has developed to a degree at which it is almost usable for HRI,
such as speech recognition. Using a wizard to recognize the users’ utterances
makes an experiment more robust and the robot’s behavior more realistic
and believable, enabling an actual interaction flow. It could, however, be
considered problematic to completely fake an AI system that can uphold a
serious and prolonged conversation because that would be considered a very
unrealistic level of capability for the robot.
WoZ can also be used to test people’s perceptions of more advanced

capabilities, such as a robot that can understand and respond to the social
context in very nuanced ways (e.g., see Kahn et al. (2012)). For experimental
studies, it is important to constrain the wizard’s behavior so that the robot’s
behavior is kept consistent across conditions and does not introduce additional
variation that can confound the analysis. WoZ can also be used as a way to
collect data from participants to help develop a robot’s design or autonomous
capabilities (e.g., Martelaro and Ju, 2017; Hu et al., 2023; Sequeira et al.,
2016).

The WoZ method is named after a character in the movie of the same
name. Dorothy and her companions set out to find the all-mighty Wizard
of Oz who can return Dorothy to Kansas. They encounter the wizard
in his castle and are afraid of his gigantic appearance, his authoritative
voice, and the smoke and fire he emits. Only when Dorothy’s dog, Toto,
pulls away a curtain do they notice ProfessorMarvel, who is operating the
machinery that controls the wizard. In HRI research, wizards often hide
in the background and control the robot, giving the robot the semblance
of having more advanced autonomous capabilities than it actually has.
We all hope not to encounter Toto and be found out.

10.6.2 Real versus simulated interaction
Although the ideal way to gauge people’s perceptions of and response to robots
is in real-time, face-to-face interaction, it is still common for HRI researchers
to present their participants only with video or photos of robots. In the field
of HRI, there has been considerable discussion on whether video recordings
of robots can be used as a replacement for live human–robot interactions.
Whereas Dautenhahn et al. (2006) argue that the two interaction styles are
broadly equivalent, Bainbridge et al. (2011) conclude that participants had a
more positive experience interactingwith physically present robots thanwith a
video representation. Powers et al. (2007) also found large attitude differences
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between participants interacting with a co-located robot in comparison to
a remote robot. Therefore, the use of visual stimuli alone limits the gener-
alizability of study findings but can be appropriate for exploratory studies
of the effects of certain factors (e.g., perceptions of different robot forms;
see DiSalvo et al., 2002) or for studies in which accessing the appropriate
population can be difficult, such as cross-cultural samples. Using videos to
present robots to participants can also enable researchers to avoid problems
associated with a less controlled experiment that involves actual interaction.
Finally, videos and photos are particularly amenable for use in studies that take
advantage of online participant pools, whether through universities, word-of-
mouth referrals, or services like Amazon’s Mechanical Turk.

10.7 Selecting appropriate HRI measures

In HRI, as in psychology and other social sciences, researchers commonly
distinguish between direct versus indirect measures to assess attitudes toward
people or objects. In the example of the “gendered” robot study described
earlier, the study design relied on direct measurements of the dependent
variables—asking participants to rate the robot’s warmth and authoritative-
ness, for example.
Within both correlational and experimental studies, self-reports are often

used to assess the constructs of interest, such as concepts or variables. Self-
report measures commonly bear high face validity, meaning that people
usually directly know what the researchers want to measure when they read
the items of the given questionnaire. On the other hand, this makes it easy for
participants to amend their actual opinion with the aim of pleasing researchers,
to represent themselves in a positive light or “be a good participant.” This
aspect also holds true for interview techniques, which are a way to gather an
even more holistic picture of participants’ thoughts and feelings toward both
humans and robots. Interviews can be structured or semistructured in nature.
In structured interviews, the interviewer asks a set of predetermined questions,
often in a specific order, whereas in a semistructured interview, the interviewer
has more leeway in deviating from the script; for example, some questions
may be planned, but others may arise spontaneously during the interview.
Both types often use questions to which interviewees can respond in their own
words. Such open-ended responses, however, require labor-intensive coding
after transcription of the interview’s content. Such interviewsmight be a useful
complement to questionnaires, though, as illustrated by deGraaf et al.’s (2017)
use of data from a long-term survey and an interview to explore the reasons
why people choose not to use a communication robot in their homes. As their
work has shown, a research participant might feel highly uncomfortable in the
presence of an unfamiliar robot.
In some cases, however, participants might be reluctant to report their true

feelings and attitudes on a questionnaire or when talking directly to an inter-
viewer. They may also not be aware of and able to report some unconsciously
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held beliefs. In that situation, it might be useful to complement your set of
direct measures with indirect ones. Reaction times are often used as a proxy for
factors that are harder to measure, such as attention or engagement. Indirect
measures can include the use of eye tracking as an indicator of attentional
focus and cognitive processing or the use of physiological measures such as
heart rate or skin conductance to give researchers an idea of participants’ level
of stress experienced during HRI. Whereas computerized measures of attitude
(e.g., a variant of the so-called Implicit Association Test2 to measure anthro-
pomorphization) have become increasingly popular, physiological correlates
of attitudes toward robots or other technologies are less frequently used in
contemporary research. Computerized and physiological measures are often
more difficult to administer and require specific equipment, and ultimately, the
findings are not always interpretable in an unambiguous manner. For example,
skin conductance can indicate that someone is excited, but it cannot reveal
whether the excitement is due to fear or enjoyment. In addition, a study in
which the skin conductance of participants was measured as they interacted
with a Nao robot showed that skin conductance readings are, unfortunately,
not very conclusive (Kuchenbrandt et al., 2014).
To circumvent difficulties in interpreting results, it is helpful to use a

combination of direct and indirect measures or several indirect measures at
once in one study to ensure that you are indeed measuring the construct,
or variable, that you intend to measure. As a researcher, you should aim to
establish that all measurements used in your research reliably and validly
assess what they are supposed to capture. This can be done by carefully pilot
testing your study designs and measures used, developing and even formally
validating new measures, or using widely accepted and validated measures
that you find in the literature.

10.8 Standards for statistical analysis

“To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able
to say what the experiment died of.”
As the famous quote by statistician Sir Ronald Aylmer Fisher (Febru-

ary 17, 1890–July 29, 1962) points out, the earlier on you ask for advice
on your experimental design and analysis, themore useful it will be.Most
universities offer statistical consultation of some sort, but even informal
discussions with peers and professors may prove of tremendous value.

Although statistics has a reputation for being confusing and incomprehen-
sible, in reality, most statistical tests are built on three main measurements:
tendency, variability, and number of observations. To understand how these
three things influence statistical testing, imagine that you’re trying to decide

2 See https://implicit.harvard.edu/implicit/
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which of two restaurants is better. You have never actually been to either,
but you can pull up reviews easily enough to compare. What would help
you decide whether restaurant A is actually better than restaurant B? Well,
obviously, you would first look at the average reviews. If restaurant A has
an average of 4.8 stars out of 5 and restaurant B averages 3.2 stars out of 5,
you will be fairly certain that A is better than B. The closer those averages
are to one another, the less certain you will be that one restaurant is actually
better than the other. This would be an indication of the difference in tendency
between both groups.
But that is not everything that you will want to take into account. If you

see that restaurant A has an average of 5 stars but only 3 people left a
review, whereas restaurant B has an average of 4.7 stars from over 1,000
reviewers, you may still opt for restaurant B. This would be because you—
quite reasonably—assume that with so many reviewers, you get a better
estimate of the “true” quality of the restaurant. This is the influence of sample
size: the more responses we have, the more certain we can be that the tendency
is an accurate representation of the truth. Another example you can think of
here is trying to figure out whether or not a coin is fair. Getting heads 75%
of the time will not let you say for sure if you flipped it only four times (and
got three heads and one tail), whereas the same percentage of heads would be
pretty convincing if you had flipped the coin 1,000 times.
And finally, there is the matter of variability. Say that restaurant A and B

both have an average of 4.2 stars and both have the same number of reviews,
but for restaurant A, these reviews range from 1 star to 5 stars, whereas
restaurant B has mostly 4-star ratings with a few 5 stars. For which restaurant
would you be more certain that the 4.2 star is an accurate indication of the
quality? This is the importance of variability: the more variable the results,
the less certain we are that our sample mean is an accurate indication of the
“true” effect.
These three measurements—tendency, sample size, and variability—are

often called descriptive statistics. They give a summary overview of data
without yet comparing conditions or calculating correlations, and they should
be used as the first stage of data analysis. Always provide means (which
indicate the tendency), standard deviations (which are an indicator of vari-
ability when the data have a normal distribution—if this is not the case,
you can provide a range), and the number of participants (sample size). In
addition, demographics (e.g., age and gender) will give your reader an idea
of whether your sample resembles the general population, and excluded data
points, together with the reason for exclusion, need to be reported for integrity
and transparency.
Next, your study will probably require inferential statistics. Most classical

statistical tests combine the tendency (often the mean), sample size, and
variability into a test statistic, which in turn is used to calculate the 𝑝-value: the
probability of getting the data at hand if there had been no true effect. Going
back to the restaurant analogy, the 𝑝-value indicates how likely it would have
been to get the reviews we got if both restaurants had been equally good.
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The smaller that chance is, the more confident we may be in the hypothesis
that one restaurant is in fact better than the other. This is the logic behind
null hypothesis significance testing (NHST). Different study designs warrant
different kinds of statistical tests to get to the 𝑝-value. Although going into the
details of the extensive number of statistical tests and procedures is beyond the
scope of this chapter, the interested reader might consult the readily available
literature, such as the work of Andy Field (2018).
Until recently, science relied on NHST to report on the importance of

results. If the probability of the data under the null hypothesis is small enough
(i.e., 𝑝-value is less than or equal to some threshold, typically 0.05), the result
may be considered “significant,” and the null hypothesis would be rejected
in favor of the alternative hypothesis. On the face of it, this provides a useful
means of characterizing the success (or failure) of a method or intervention.

The definition of the 𝑝-value may sound formal and confusing, but you
have probably applied an intuitive version of it before. For example, take
a look at the following headline, published in theMoscow Times (2020) at
the start of the coronavirus pandemic: “Third Russian Doctor Falls from
Hospital Window after Coronavirus Complaint.”
Reading this headline may have made you wonder whether this unfor-

tunate accident was indeed only that, an accident. Your suspicion would
stem from your inference that under the null hypothesis (i.e., if there had
been no conspiracy against critical doctors), the probability of three of
these incidents in a row would have been quite low. Although you did
not calculate a concrete value, this is, in essence, what the 𝑝-value boils
down to.

10.8.1 Making sense of statistics
There are a few common misunderstandings and often-overlooked impli-
cations in NHST, which have given rise to a recent questioning of the
overreliance on NHST and 𝑝-values (Nuzzo, 2014).
Assuming a threshold of 𝑝 ≤ .05, this still means that 5% of the time

where the null hypothesis is true (i.e., there is nothing going on), the obtained
data will look as if there is an effect. This would constitute a Type I error, or
false positive. Because false positives look exactly like true positives, even a
significant result cannot be taken as conclusive proof that there is an effect.
Moreover, the 𝑝-value is often wrongfully taken to indicate “the chance of a

Type I error.” This complete misinterpretation of the 𝑝-value is pervasive and
widespread among both students and academics (Badenes-Ribera et al., 2015;
Lyu et al., 2020). In reality, the 𝑝-value only indicates the chance of a Type I
error if nothing had been going on (i.e., conditional on the null hypothesis),
and the overall chance of the results being due to a Type I error cannot be
computed.
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A fundamental issue with NHST concerns the inferences that one can
and cannot draw from it. What is tested in NHST (the chance of finding
the current data, provided that there is no true effect, or 𝑝[𝐴|𝐵]) is not
what the researcher actually wants to know (the chance of a true effect,
provided the current data, or 𝑝[𝐵|𝐴]). Although these may seem similar,
their fundamental difference becomes clear when we consider sharks and
death tolls. The chance of dying, provided that you are eaten by a shark,
𝑝(𝑑𝑒𝑎𝑑|𝑠ℎ𝑎𝑟𝑘𝑏𝑖𝑡𝑒), is pretty close to 1. However, the chance that you
are eaten by a shark, provided that you are dying, 𝑝(𝑠ℎ𝑎𝑟𝑘𝑏𝑖𝑡𝑒|𝑑𝑒𝑎𝑑),
is close to 0—for better or worse, most of us die from other causes than
shark attacks. In his entertaining and remarkably accessible paper “The
Earth Is Round (𝑝 < 0.05),” Jacob Cohen explains some of the problems
with NHST in further depth (Cohen, 1994).

Related to the misunderstanding of the 𝑝-value is the misconception that
𝑝-values are stable; that is, if you conduct a study twice, you should get a
similar 𝑝-value each time (Badenes-Ribera et al., 2015). Empirical results
have suggested, and simulation studies have shown, that 𝑝-values are highly
volatile in experiment replications. Repeating a study that has a significant
𝑝-value can result in the 𝑝-values of the replication study being in the range
[0.00008,0.44] for 80% of the replication studies (Cumming, 2008). 𝑝-values
are thus unreliable as a measure of how solid a result is.
Another common mistake is the conflation of a 𝑝-value with how big or

important an effect is. The significance, size, and importance of an effect are
three different things: a very small (“highly significant”) 𝑝-value does not say
anything about the size of the observed experimental effect. An effect size
captures how large a change is between two conditions. It is calculated from
the tendency and the variability of the data. The 𝑝-value, in addition, takes the
sample size into account. Thus, the 𝑝-value can be considered an indication
of how consistent the effect in the collected sample is, whereas the effect size
indicates how large it is. These two measurements should both be seen as
different from importance.
To illustrate the distinction between the three, consider the following

situation: A new treatment has been developed for a medical condition. You
compare this new treatment against the conventional treatment and find a
significant yet small effect: recovery rates improve from 4% to 6%. What
to make of this? Well, that depends. If the medical condition is foot fungus,
you probably won’t care much for a 2% higher chance of getting rid of your
fungus. You would need a larger effect size to really care, especially if this
new treatment is more expensive or has more side effects than the standard
treatment. However, if the 2% increase refers to the chance of survival from
a very aggressive kind of cancer, the very same effect size would probably be
considered rather important.
Different statistical tests come with their own calculations of effect size;

common effect sizes include Cohen’s d (for a t-test), 𝜂2
𝑝 or 𝜔2 (for analysis
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Figure 10.6 If you
had to make a guess,
how strongly would
you say the two
variables in the plot
are correlated? It
has been shown that
people find it very
hard to infer the
strength of a
relationship from
plots. On the
website www.guesst
hecorrelation.com,
you can try for
yourself. (By the
way, the correlation
in the picture is r =
.43, which is
considered a
medium effect.)
(Source: Omar
Wagih)

of variance (ANOVA)), and 𝑅2
adj (for regression). For most effect sizes, there

are guidelines available to help with the interpretation, which will provide a
rule of thumb of what constitutes a “small,” “medium,” or “large” effect. For
example, in Figure 10.6, a medium effect for a correlation is shown.
A final important implication from NHST involves capitalizing on Type

I errors, also known as “𝑝-hacking.” You already encountered this in the
discussion of spurious correlations in Section 10.1.2. The logic behind 𝑝-
hacking is as follows: if a cutoff value of 𝑝 ≤ .05 is used, then if there is no
true effect (i.e., under the null hypothesis), logically, one would expect a false
positive 1 in 20 times. Thus, if you run enough tests, you will eventually find
a significant result even if, in reality, there is none. If you then only report the
significant results and leave out all the times where you found no effect, you
can easily present your results as a valid new finding. 𝑝-hacking is especially
problematic for observational studies because it is very easy to measure many
variables and keep testing the relationship between different combinations of
measurements until you find one that is significant.

10.8.2 Good practices to overcome issues with classic statistical testing
We can partially remedy these issues by reporting not only the 𝑝-values but
also the confidence intervals (CIs) of our data. CIs do not compare data and
therefore cannot be used to say if results are significant or not. Instead, they
report on how confident we are that the population mean (which we estimate
through the mean of our sample) lies between a minimum andmaximum value
of the CI. When reporting the 95% CI of data, this means that in a replication
study, themean of the replication data will have an 83% chance of beingwithin
the CI of the original experiment. Reporting CIs and effect sizes conveys
additional information on the magnitude of an effect and the precision of the
estimates provided. This information complements the significance and will
help both you and your reader to make sense of the findings (Coe, 2002).
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The 𝑝-value indicates the chance of a Type I error (false positive) under
the null hypothesis. However, as mentioned in Section 10.3, the opposite is
possible as well: a researcher can conduct an experiment, gather data, and then
wrongfully conclude that there is no effect. This has been, not very creatively,
named a Type II error, or a false negative. Type I and II errors can be avoided
by making sure your experiment has sufficient statistical power to detect
any true effects. Power depends on the same three measurements mentioned
before—tendency, variability, and sample size—but of those three, only the
last one is under your control. Thus, you have to make sure you collect either
enough participants or enough data points per participant. This can be tricky,
and the number of participants needed can increase dramatically depending on
how complicated your study design is or how small the effect you’re hoping to
detect is. Software such as G*Power (Faul et al., 2007) allows you to calculate
the power both before and after a study.
Another way to ensure that results are trustworthy and not the consequence

of Type I or II errors is through replication. Psychology has recently seen a
replication crisis (Maxwell et al., 2015), where a number of “established”
effects failed to replicate. Although this is to be expected under NHST,
𝑝-hacking may have been partially responsible. In HRI, the reproducibility
of research has been less prominent on the research agenda, but the recent
concerns in the social science community have brought these topics into the
purview of HRI researchers as well (Irfan et al., 2018). Replication of HRI
results is also now more possible than before because of the wide availability
of certain robot platforms (e.g., Nao or Baxter), in contrast to the earlier
reliance by researchers on bespoke platforms.
Registration can facilitate replication and prevent 𝑝-hacking by forcing

researchers to specify exactly what tests they are planning to run before
collecting data (see p. 164). There has been a drive for sharing code for
commonly available robots and, if possible, making the experimental proce-
dures available to other HRI researchers in order to enable them to run the
same experiment in their own labs, testing the generalizability of a certain
research question across contexts (Baxter et al., 2016). Overall, the notion of
generalizability is highly important, even though representative samples are
hard to obtain in HRI research.
The choice of methodology also affects the degree to which we can gener-

alize from our HRI studies in the laboratory to those findings obtained from
field studies. Developing new robots, applying robots in different contexts,
and understanding the potential consequences of robots for people in daily
life may require a combination of the methods mentioned in this chapter. This
does not need to be done in one research project or by a single researcher but
could be accomplished by the HRI research community over time.
A final, radical way to overcome issues associated with NHST is to

abandon NHST altogether. This can be done through the adoption of Bayesian
inference, amethod of statistical analysis that has been increasing in popularity
(Van de Schoot et al., 2017). As noted in Section 10.8, NHST draws inferences
conditional on the null hypothesis: How likely are these data if nothing had
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been going on? The outcome is dichotomous: a result is either significant,
or it is not. In contrast, Bayesian statistics uses prior information to draw a
hypothesis and updates this with the newly gathered data. The result is not a
single estimate but rather a range of possible values and an indication of how
much confidence can be placed in each estimate (Etz and Vandekerckhove,
2018). As a result, it is rare that a “hard conclusion” is drawn from Bayesian
inference. Rather, previous beliefs are strengthened or weakened, depending
on how the newly found data align with the prior data.

10.9 Ethical considerations in HRI studies

Last but not least, one important aspect to consider when dealing with human
participants in HRI studies is the need to take into account the ethics of human-
subjects research. Any research that involves human participants, whether
correlational or experimental, qualitative or quantitative, online or in person,
requires participants’ informed consent before the research is started. That
is, participants are informed about the nature of the study and what to expect,
with an emphasis on the voluntary nature of their participation and information
regarding the risks and benefits of taking part in a given research study. Before
starting a study, either online or in the real world, participants have to declare
that they understand what they will be asked to do and what will be done with
the collected data and that they consent to participating. Many universities
and institutions have specific guidelines on how participants can be recruited
and informed about their participation in research studies. Researchers need
to be aware of this and follow all policies to be able to present their results for
publication after the study.
Sometimes, however, it is impossible to fully disclose the actual goals of

the given research project. In that case, a cover story or deception is used. For
instance, inWoZ studies, participants are led to believe that a robot can behave
autonomously. In that case, it is key to provide post-experimental information,
a so-called debriefing, to participants so that they do not go home from the
study thinking that robots are currently able to function fully autonomously.
This is even more critical if a robot might provide the human interaction

partner with fictitious feedback about the human’s personality or performance.
Of course, the participants then must be debriefed about the reason for
providing made-up feedback, and they must be informed that this feedback
was actually bogus. Again, this serves to ensure participants’ psychological
well-being beyond the duration of the study.
In the case of qualitative research, initial information about the study goals

given to participants may be more cursory, but the common practice is to
later inform study participants of the findings if they are interested. In some
cases, researchers might even discuss their interpretations of the data with
participants or collaboratively develop interpretations and future robot design
and implementation guidelines based on the results.
In HRI research, we also have to consider the ethical aspects of having

humans involved with robots—both in terms of physical and psychological
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safety and in terms of the implications an interaction could have for a given
individual. Think, for example, of an elderly person who has had a robot in
his or her home for a certain amount of time and might have gotten attached
to the robot companion. Consequently, the day the robot is taken away, this
will cause distress. Users’ emotional reactions toward robots, the attachments
they might build, and the void that results when the robot is taken away must
be considered.
To make sure that you are complying with ethics regulations, you may

consult with the various codes of ethical conduct, such as those provided by the
American Psychological Association,3 the American Anthropological Asso-
ciation,4 or the Association for Computing Machinery.5 Your university’s
ethics committee may provide more detailed feedback regarding your specific
research study. Note that ethics approval is a requirement for publication
in many scientific journals, so consider getting it before you start your data
collection.
Along with ethical behavior toward research participants, researchers

should also reflect on the ethical implications of their research aims, questions,
and findings andmake choices about what types of research to pursue, and how
to go about it, with these implications in mind. Such ethical considerations
can include questions about where to seek out and whether to accept funding,
whether to participate in research that may inform particular corporations or
governments, and even how to structure one’s relationship with participants
and their ability to provide input on the methods and presentation of research
results.
More generally, the ethical and social consequences of the implementation

of robots in society have to be taken into account. In most contemporary
research projects that deal with smart homes or the deployment of robots in
homes, care facilities, or public spaces, these aspects have to be investigated
and addressed. Considering the ethical implications of digitalization and a
potential hybrid human–robot society is a key societal issue that is now
discussed at large, not solely by robot ethicists and philosophers.

10.10 Conclusion

HRI studies have a lot in common with work in several social science
disciplines, including experimental psychology, anthropology, and sociology.
It is good practice to be aware of scholarly norms and practices in the field
or fields relevant to your work. HRI researchers are expected to be aware of
and adopt the same rigor when collecting and reporting data as other scholars
using the methods they have chosen.

3 See www.apa.org/ethics/code/
4 See https://s3.amazonaws.com/rdcms-aaa/files/production/public/FileDownloads/pdfs/issues/policy-a
dvocacy/upload/ethicscode.pdf

5 See www.acm.org/about-acm/code-of-ethics

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

www.apa.org/ethics/code/
https://s3.amazonaws.com/rdcms-aaa/files/production/public/FileDownloads/pdfs/issues/policy-advocacy/upload/ethicscode.pdf
https://s3.amazonaws.com/rdcms-aaa/files/production/public/FileDownloads/pdfs/issues/policy-advocacy/upload/ethicscode.pdf
www.acm.org/about-acm/code-of-ethics


10.10 Conclusion 193

HRI is also sensitive to the same problems that have plagued the social
sciences for over a century. For example, in the drive to come up with original
work, HRI experiments are almost never repeated. There is also a considerable
publication bias, with positive results more likely to make it to publication,
whereas negative results, less exciting results, or less conclusive findings tend
not to get published or to go unnoticed. However, HRI has opportunities that
were not on offer until recently. Experimental data, including large video
logs, can now be fully stored and shared with others, ready for scrutiny or
additional analyses. Methods, protocols, and results are now more available
than ever before, largely due to the drive toward open-access publishing and
preregistration of experiments.
Although there are new and exciting publishing options available, the HRI

community is also exposed to the financial and social constraints of academic
publishing. Although conferences offer a fast and predictable publication
process, they do require considerable financial resources to travel to the event.
Publishing in reputable open-access journals also comes with a considerable
price tag. Flaky journals and conferences (Bartneck, 2021) offer much more
affordable options without offering any advantage over just posting your
article online yourself. Researchers often have no choice but to fall back to
the traditional publishing channels, such as commercial journals, that do not
charge the individual authors, but the libraries of their institutions.
The scientific publishing environment has changed and will continue to

change. A big step forward is when large funding agencies require their funded
projects to publish in open-access formats. In the meantime, researchers can
choose to deposit their work in the institutional repositories of their institutions
or on their private websites. This approach is often referred to as green open
access, also known as self-archiving. It has been shown that making articles
openly available increases their citations (Gargouri et al., 2010).
HRI researchers can also find relevant methodological approaches and

discussions in the related field of HCI, which has a longer history of per-
forming user studies, system evaluations, and theory building around the
use of computing technologies in society and can provide guidelines and
critical perspectives pertinent to HRI research. HRI researchers can learn from
discussions about how to incorporate contextual variables into their work, how
to think critically about design and study methods, and how to work more
closely with the potential users of new robotic technologies through prior work
in HCI. It is also, however, important to remember that HRI deals with robots,
which are not only a different, embodied technology compared to computers
but also pose different technical and social challenges for research.

Questions for you to think about:

• In some instances, it is not ethical or possible to answer a research
question with an experiment. Can you think of such an instance? How
would you address ethical issues related to the setup of your study?
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How might you address concerns about the inclusion of vulnerable
populations (e.g., children, older adults with cognitive impairments)
in your study?

• “Significance” has been considered a misleading term because it says
nothing about the relevance of a finding. Can you think of a situation
where finding a significant small effect is relevant? What about a
situation where it is irrelevant?

• Say you want to set up an experiment in which you assess how well a
robot tutor teaches children. How would you set up your study? How
would you measure the robot’s ability as a tutor? What confounding
factors do you expect?

• HRI studies often seek to address people’s subjective experiences of
robots—their enjoyment of the interaction, for example. How would
you measure enjoyment, incorporating both direct and indirect and
subjective and behavioral measures? How would you make sure that
your enjoyment measure has construct validity—that it is actually
measuring enjoyment with the robot, not just general happiness, or
reflecting the participant trying to please the experimenter?

• How would you approach a user evaluation of your prototype differ-
ently from a systems evaluation? What types of questions would you
want to answer in each type of evaluation? What kinds of measures
would you use in each type of evaluation?

10.11 Exercises

The answers to these questions are available in the Appendix.

* Exercise 10.1 Convenience sample What is a convenience sample? Select
one option from the following list:

A group of participants that you recruited in a convenience store1.
A group of participants recruited online through a crowdsourcing service2.
A group selected based on participants’ easy accessibility or proximity to
the researcher, such as university students

3.

A statistical technique used to minimize bias in research studies.4.

* Exercise 10.2 Types of studies What type of study offers the possibility
of establishing correlation or even causation? Select one option from the
following list:

A qualitative study1.
A descriptive study2.
A cross-sectional study3.
A quantitative study4.
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** Exercise 10.3 What do participants see? In which experimental design
do participants see all experimental conditions? Select one option from the
following list:

Within-subject design1.
Between-subject design2.
Longitudinal design3.

** Exercise 10.4 Correlations and causation Correlation and causation are
important concepts in scientific study. Which statement is correct? Select one
option from the following list:

Correlation causes causation.1.
They are the same thing—if variable A is correlated to variable B, then it
also causes B.

2.

Causation is a prerequisite for correlation.3.
Correlation is a necessary but insufficient criterion for causation.4.
Causation is a synonym for correlation.5.

** Exercise 10.5 Variables There are two types of variables in scientific
studies. Select one or more options from the following list:

Independent variables are aspects that the experimenter manipulates.1.
Measurements are independent variables.2.
Dependent variables are aspects that the experimenter manipulates.3.
The experimenter manipulates measurements.4.
Dependent variables are aspects that the experimenter measures.5.

** Exercise 10.6 Causal relationships Only certain study types allow you
to establish a causal relationship.Which studies allow you to establish a causal
relationship? Select one or more options from the following list:

Observational studies1.
Ethnographic studies2.
Conversational analysis3.
Controlled studies4.
Case studies5.
System studies6.

*** Exercise 10.7 Statistical inference A researcher uses the significance
level of 𝑝 ≤ .05 to test the relationship between robot likability and 40
other measured items. In reality, not one of these 40 items is related to robot
likability. On average, how many significant results would you expect?

Zero1.
Five2.
Two3.
The question cannot be answered with the information given.4.
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** Exercise 10.8 Building blocks Each of the following reviews indicates
the importance of a different aspect of your data collection. Pair the images
(a–c) with the names of the concepts.

a. b. c.

Tendency1.
Variability2.
Sample size3.

Future reading:

• Bethel, Cindy L., and Murphy, Robin R. Review of human studies
methods in HRI and recommendations. International Journal of Social
Robotics, 2(4):347–359, 2010. doi: 10.1007/s12369-010-0064-9.
URL https://doi.org/10.1007/s12369-010-0064-9

• Field, Andy, and Hole, Graham. How to Design and Report Exper-
iments. SAGE Publications, Thousand Oaks, CA, 2002. ISBN
978085702829. URL http://worldcat.org/title/how-to-design-and
-report-experiments/oclc/961100072

• Hoffman, Guy, and Zhao, Xuan. A primer for conducting experiments
in human–robot interaction. ACM Transactions on Human-Robot
Interaction (THRI), 10(1):1–31, 2020. doi: 10.1145/3412374. URL
https://doi.org/10.1145/3412374

• Riek, Laurel D. Wizard of Oz studies in HRI: A systematic review and
new reporting guidelines. Journal of Human-Robot Interaction, 1(1):
119–136, 2012. doi: 10.5898/JHRI.1.1.Riek. URL https://doi.org/10
.5898/JHRI.1.1.Riek

• Baxter, Paul, Kennedy, James, Senft, Emmanuel, Lemaignan, Severin,
and Belpaeme, Tony. From characterising three years of HRI to
methodology and reporting recommendations. In 11th ACM/IEEE
International Conference on Human-Robot Interaction, pages 391–
398. Institute of Electrical and Electronics Engineers, Piscataway, NJ,
2016. ISBN 978-1-4673-8370-7. doi: 10.1109/HRI.2016.7451777.
URL https://doi.org/10.1109/HRI.2016.7451777

• Šabanović, Selma, Michalowski, Marek P., and Simmons, Reid.
Robots in the wild: Observing human-robot social interaction outside
the lab. In 9th IEEE InternationalWorkshop on AdvancedMotion Con-
trol, pages 596–601. Institute of Electrical and Electronics Engineers,
Piscataway, NJ, 2006. ISBN 0-7803-9511-1. doi: 10.1109/AMC.20
06.1631758. URL https://doi.org/10.1109/AMC.2006.1631758

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

https://doi.org/10.1007/s12369-010-0064-9
http://worldcat.org/title/how-to-design-and-report-experiments/oclc/961100072
http://worldcat.org/title/how-to-design-and-report-experiments/oclc/961100072
https://doi.org/10.1145/3412374
https://doi.org/10.5898/JHRI.1.1.Riek
https://doi.org/10.5898/JHRI.1.1.Riek
https://doi.org/10.1109/HRI.2016.7451777
https://doi.org/10.1109/AMC.2006.1631758


10.11 Exercises 197

• Young, James E., Sung, JaYoung, Voida, Amy, Sharlin, Ehud, Igarashi,
Takeo, Christensen, Henrik I., and Grinter, Rebecca E. Evaluating
human-robot interaction. International Journal of Social Robotics, 3
(1):53–67, 2011. doi: 10.1007/s12369-010-0081-8. URL https:
//doi.org/10.1007/s12369-010-0081-8
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Applications

What is covered in this chapter:

• The diverse areas of robot applications where human–robot interaction
(HRI) is an important component.

• Applications beyond robots that are studied in a research context.
• Possible future applications.
• Potential problems that would need to be solved when HRI has a larger
role in our society.

Human–robot interaction (HRI) has numerous applications expected to make
a positive difference in people’s lives. HRI is increasingly getting traction
in the technology market, and although most applications are still being
developed in the academic sphere, adventurous start-ups have popped up
that are developing and selling HRI applications, and established information
technology (IT) industries are keen to understand and develop technologies
that allow robots or robot technology to interact successfully with people.
Not all of these enterprises turn out to be successful. Sony, for example,
was one of the pioneers of commercial robotics with its Aibo (see Figure
11.1) and Qrio (see Figure 11.2) robots, only to stop its efforts in the field
in 2006. However, Sony’s efforts were recently rekindled, with a new Aibo
appearing in 2018 (see Figure 2.10). After Softbank Robotics released Pepper
in 2014, the robot showed up in retail and entertainment roles across the
world. Production of new Peppers was paused in 2020. Another example is the
Bosch company, which initially supported Mayfield Robotics in developing
the Kuri home robot but stopped the project before the official product
launch.
A successful HRI application means something different depending on the

perspective one takes: the notion of what constitutes success is very different
for a researcher compared to an entrepreneur. Whereas a researcher will
be interested in measurable outcomes of the robot’s use and usability, an
entrepreneur might be less concerned about the effectiveness of the robot and
will be happy with a “good enough” technical solution that can be brought
to market, thus preferring sales figures over scientific figures. Some may
even develop unsuccessful applications on purpose for the entertainment value
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Figure 11.1 The
Sony Aibo ERS-7
(2003–2005) with
the Nao
(2008–present)
robot.

Figure 11.2 Sony’s
Qrio robot (left)
(2003–2006) and
Mayfield Robotics’
Kuri (right)
(2016–2018)—two
robots that never
made it to the
consumer market.
(Source: Qrio,
Sony; Kuri,
Mayfield Robotics)

or to inspire people to think more critically about the uses and design of
robotic technology (see the accompanying text box for examples). Similarly,
people may evaluate robots differently when they consider them as a research
prototype and when they judge them as products they may or may not want to
purchase (Randall et al., 2022).
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The self-crowned “Queen of Shitty Robots,” Simone Giertz is a robot
enthusiast who designs service robots that usually perform poorly in their
intended application. Her videos on the testing of her different creations
not only have entertainment value but also demonstrate how designing
robots for seemingly simple tasks can prove to be quite challenging.
White’s “Helpless Robot,” on the other hand, is a machine with a passive
personality that asks people to move it around the room, opening up
questions about the meaning of machine autonomy and whether our
machines serve us or whether it is the other way around.a

𝑎 See www.youtube.com/channel/UC3KEoMzNz8eYnwBC34RaKCQ/

For now, most robot applications remain at the research stage, but this is
expected to change rapidly. The first wave of commercial success in robotics
took place in automating industrial production; the second wave of commer-
cial success can be considered as robots with simple navigation capabilities,
such as warehouse robots and delivery robots; the next wave of commercial
success is expected to come from introducing robots in dynamic and open
environments populated by people in customer service, companionship, and
socially and physically assistive roles. It is here that HRI has its major role
to play: a solid understanding of how robots should behave around people
and how people respond to and benefit from robots is needed to make the next
robot wave a success (Haegele, 2016).We also need to consider the question of
robot cost and how consumersmay evaluate it in relation to a robot’s purported
functions and benefits, as well as sources of potential funding to purchase
robots for different consumers (e.g., health insurance), which are questions
that academic studies of HRI have rarely considered as of yet.
This chapter discusses the more common applications of social robots.

Section 11.1 covers the use of robots in customer service, ranging from tour
guides to sales bots; Section 11.2 focuses on the use of robots in the educa-
tional system. In Section 11.3, robots from different forms of entertainment
are introduced. Sections 11.4, 11.5, and 11.6 look at robots in more serious
roles, such as healthcare, personal assistance, and services such as delivery and
domestic cleaning. Robots fulfilling security tasks are covered in Section 11.7,
whereas Section 11.8 briefly discusses collaborative robots. Finally, Section
11.9 considers autonomous vehicles (AVs).

11.1 Customer-facing robots

A novel robot often attracts people’s attention; in public spaces like shopping
malls and stores, visitors become interested and approach, and children crowd
around it. This makes robots an ideal asset for customer service settings, at
least during the initial “novelty” stage of a robot’s use. Many such applications
have already been successfully tested in field research and have been deployed
in grocery stores or bank branches (e.g., Pepper providing service at HSBC in
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the United States). Robots have also been deployed in the context of hotels
(Nakanishi et al., 2020) to promote “heartwarming interactions.” In Japan,
people can interact with robots in “robot cafés” in various ways: customers can
hold and pet Lovots or Aibos at their tables, they can be served by people with
disabilities logged into telepresence robots or by autonomous Pepper robots,
and they can even bring their own robots to the café to interact with others
(Kamino and Šabanović, 2023). During the COVID-19 pandemic, a Pepper
robot was used in a hospital in Brussels to checkwhether visitors were wearing
their masks correctly before entering the hospital.

Figure 11.3
Care-O-bot robot as
a museum guide
(2023).

11.1.1 Tour guide robots
One of the applications developed in the early years of HRI research is
the tour guide robot (Burgard et al., 1998; Shiomi et al., 2006; Bose et al.,
2022). Typically, a tour guide robot moves from one location to another
while providing information about nearby entities; some of them take the
user to a requested location. This robot application involves navigational
interaction (e.g., the robot safely moving around in an environment it shares
with humans) and face-to-face interaction with its users (see Figure 11.3).
Along with providing a service to customers, tour guide robots also provide
a way for researchers to explore people’s open-ended interactions with robots
and test out the effects of different interaction strategies on users’ perceptions
of robots in a somewhat more structured environment.
There are many instances of successful tour guide applications. One

such application is in a museum setting, where a mobile robot is left to
autonomously navigate around. Visitors are invited to use a user interface on
the robot to indicate whether they want to have a tour guide. Once a tour is
requested, the robot leads the visitors to several exhibits, providing a brief
explanation at each (Burgard et al., 1998). HRI researchers experimenting
with museum robots have found that giving the robot the ability to display
emotions can enrich the educational experience and allow the robot to better
manage its interactions with people, such as getting them to move out of
its way by expressing frustration (Nourbakhsh et al., 1999). An alternative
application concerns the retail context, when a customer may want to know
where in the store a specific item is kept, and a robot takes the lead to show
the customer the way to the appropriate shelf (Gross et al., 2009). A final
example is the airport, where a robot can escort travelers to the gate for their
next flight (Triebel et al., 2016; Hwang et al., 2022; Chen and VG, 2022).
It is easy to imagine similar scenarios where robots would be helpful. For

example, it is common for people to escort other people in daily interactions,
either because they need physical assistance or because theywant to be accom-
panied. Robots could be used in this context in the future. One such application
being developed byHRI researchers is a guide robot for individuals with visual
impairments (Feng et al., 2015). Although the current limitations in robotic
hardware and HRI capabilities prevent such uses in the present, technical
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advancements and further HRI research should enable us to have robots with
faster velocity and better navigation capability in human crowds that can be
applied for accompanying users in a broader range of environments.

Figure 11.4
Receptionist robot.

11.1.2 Receptionist robots
Receptionist robots are placed at a reception desk and interact with visitors,
typically offering information through spoken-language conversation. For
instance, Gockley et al. (2005) studied people’s interactions with a robot with
a display for its head as a receptionist at a university (see Figure 11.4). The
robot was able to provide directions and would share daily stories with people
who came to chat with it. It turned out that people were sensitive to the robot’s
moods, and the length of their interactions with it changed based on whether
the robot displayed a happy, sad, or neutral expression (Gockley et al., 2006).
There is also work that includes multiparty interaction, an HRI constellation
that still brings lots of challenges (Moujahid et al., 2022). Moreover, android
robots have been used as receptionists in hotels. In this case, users use a
graphical user interface to proceed through the check-in process, attended
by an android robot and a small humanoid robot that offers greetings to the
visitors.

11.1.3 Robots for sales promotion
Another straightforward application of service robots is product promotion in
the retail context. In this setting, robots can function as proxies for store clerks,
informing customers about the promotions offered by the store. Because
people are naturally curious about robots, these robots can easily attract the
attention of potential visitors, who will stop to listen and then look around. In
Japan, Pepper is already used for this purpose. In the typical use case, robots
are not necessarily proactive but instead wait for visitors to initiate interaction.
In the research context, researchers study robots that proactively approach
customers to offer promotions (Satake et al., 2009). For instance, the famous
Geminoid android robot has been deployed in shoppingmalls in Japan to boost
sales (Watanabe et al., 2015; Chen et al., 2022).

11.2 Robots for learning

Social robots have been shown to be particularly effective in assisting in
learning and education through social interaction (Belpaeme et al., 2018).
This should not be confused with the use of robot building as an educational
tool to teach mathematics, programming, or engineering, such as LEGO
Mindstorms. Robots can take on various roles in the process of learning: The
robot can act as a teacher, taking the students through the curriculum and
offering testing opportunities to assess knowledge. As a tutor, a robot would
support the teacher in his or her teaching (Kanda et al., 2004). This role is
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actually preferred by teachers and students (Reich-Stiebert and Eyssel, 2016).
However, the robot is also often presented as a peer. The peer-like robot has
a similar level of knowledge as the learner, and the learner and robot take a
learning journey together, with the robot adapting its performance to that of
the learner. Robots as peers can also encourage learners to adopt a “growth
mindset,” which leads to higher achievement (Park et al., 2017b). At the far
extreme is the robot that needs to be completely taught by the student. This
approach, known as a care-receiving robot or teachable agent, is effective for
two reasons. First, teaching a subject often leads to mastery of that subject, and
second, having a less knowledgeable peer can boost the learner’s confidence
(Hood et al., 2015; Tanaka and Kimura, 2010). Finally, robots could also be
used as a sidekick for teachers. In this role, the robot spices up the lesson and
makes the learning more entertaining, thus capturing student interest (Alemi
et al., 2014).
Tutoring robots may take over specific tasks from the teacher. Because

teachers typically deal with class sizes of more than 20 students, they are
required to teach to the mean of the class using a broad rather than a
personalized style. It has been shown that tutoring has a strong impact on
learning. Bloom (1984, p. 4) found that one-to-one tutoring resulted in a two-
standard-deviation improvement against a control group, concluding that “the
average tutored student was above 98% of the students in the control class.”
Although research has since shown that the effects are not as large as first
observed, there is nonetheless a distinct advantage to the one-to-one tutoring
approach (VanLehn, 2011). Social robots in education capitalize on this by
offering a one-to-one, personalized tutoring experience.
Robots have been used to teach a wide range of topics, frommathematics to

languages and even mindfulness and social skills, both to adults and children.
The main contribution of the robot seems to be that its physical presence
promotes learning. Although computer-based tutoring programs, also known
as intelligent tutoring systems (ITSs), are effective (VanLehn, 2011), the social
robot adds to this through its social and physical presence. Studies have shown
that robots offer a distinct advantage over on-screen social agents or ITSs, and
the students learn faster and learn more when tutored by a robot as compared
to alternative technologies (e.g., Kennedy et al. 2015; Leyzberg et al. 2012).
The reasons for this are still unclear: it might be that the social and physical
presence of the robot engages the learner more than just on-screen delivery
and feedback, or it might be that the learning experience is more multimodal,
thus resulting in a richer and embodied pedagogical exchange (Mayer and
DaPra, 2012)—of course, a combination of these two is also possible. It
may come as no surprise that socially supportive robots perform much better
(Saerbeck et al., 2010). Some socially interactive behaviors can also backfire
in learning contexts, leading the student to interpret the robot as a peer rather
than a teacher and to engage with it socially rather than focusing on achieving
certain learning goals (Kennedy et al., 2015). HRI research is therefore
necessary to guide the development of robots that can effectively support
learning.
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11.3 Robots for entertainment

11.3.1 Pet and toy robots
Robotic pets and toys were among the first commercial robot applications for
personal use. After the first doglike robot, Aibo (Fujita, 2001), appeared on
the market in 1999 (see Figure 11.1), the development of many other enter-
tainment robots soon followed. Compared with other robotic applications,
entertainment robots have been easier to get to market because the functions
they perform do not have to be as advanced, and they often use preprogrammed
capabilities, such as dancing, talking, burping, and even seeming to develop
their knowledge by simply starting to use more advanced preprogrammed
skills after a period of time. Some of the most popular robotic toys over the
years have been Furby, Sony’s Aibo robot dog, and more recently, Cosmo.
LEGO Mindstorms was a market leader in the educational toy robot niche
but has recently been discontinued; it is followed by a slew of robots that
allow children to learn how to code and think computationally, such as Dash
and Dot and Ozobot, among many others. The WowWee company is another
market leader, with many different robots, including the humanoid robots
Robosapiens and Femisapiens and a mobile home robot. The company Sphero
developed a robotic ball that could be remote-controlled; following the release
of the new series of Star Wars films in 2015, the company amended the design
to represent the BB-8 droid, which became one of the most popular holiday
toys of that season.
Although most entertainment robots target children and adolescents, many

are also enjoyed by adults. The Aibo in particular was very popular with
adults, who even started a “black market” of Aibo parts when the robot was
discontinued by Sony in 2006. As mentioned earlier, Sony introduced a brand-
new version of Aibo in 2018.
Pleo (see Figure 11.5), a Camarasaurus rex robot platform, provides a

similar complexity of interaction, with various modes of personality and
behavior that adapt and change across time and users. These examples show
that many robot toys are not necessarily social or humanlike in appearance,

Figure 11.5 Pleo robot
(2006–present).
(Source: Max Braun)
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but they still elicit strong social responses in children and adult consumers
alike.
Considering the variety of ways in which robots can provide entertainment

and the popularity of robots among the public in general, it is not surprising
that the market for toy robots has been and is expected to stay one of the largest
for personal robots (Haegele, 2016).

11.3.2 Robots for exhibitions
Robots are often used in exhibitions and theme parks to entertain audiences.
These often-animatronic devices are very robust; they must play the same
animation script sometimes hundreds of times per day, with only a brief
moment for maintenance between performances. Some robots intentionally
look like robots, but others resemble animals, for example, dinosaurs (see
Figure 11.6), or people. In these cases, the robot has flexible latex skin, which
has been carefully painted to reflect realistic skin coloration and patterns.Most
of these animatronic robots have no autonomy: they play a prerecorded script
of animation timed to a soundtrack. In rare cases, the robot may have limited
autonomy, such as the ability to focus on members of the audience while
speaking. A popular example of the use of animatronic robots is the Hall of
Presidents located in the Walt Disney World Resort.

11.3.3 Robots in the performing arts
Robots are also sometimes used in the performing arts. One of the first robot
performance art pieces was Senster, created in 1970 for Philips’ Evoluon
in Eindhoven, the Netherlands (Reichardt, 1978). Senster was an electro-
hydraulic structure shaped after a lobster’s claw, with six hinged joints.

Figure 11.6
Animatronic robot.
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It registered and responded to sound and movement from the environment.
It was on display until 1974, when it was dismantled. More recently, 20 Nao
robots performed a synchronized dance recital for France Pavilion Day (June
21) at the Shanghai 2010 Expo.
Not all art applications have to be for a broader public. Home theater

systems might soon become what their name promises. Imagine a future in
which you download the theater script of Romeo and Juliet into your robots.
You can then either watch the robots perform the play or join in yourself.
It is important to note that a major use of robotics—both in the past and
currently—is to automate tasks that we do not want to perform ourselves.
Industrial robots, for example, were introduced to relieve us of difficult and
repetitive manual labor. There is little use in automating tasks that we actually
enjoy doing. This does not mean that there is no place for robots in the
theater—plays that actually deal with robots should, of course, be cast with
robots (Chikaraishi et al., 2017).
Furthermore, there are many ways in which robots can interact with people

in art performances, to which the future social robots could contribute as a
human counterpart. For example, Hoffman and Weinberg (2010) developed
a marimba-playing robot that joins a jazz-like session with a human player.
Kahn et al. (2014) revealed that a robot can partner with a human to enhance
human creativity in the art-creation context. Nishiguchi et al. (2017) suggest
that developing robots that can perform as actors in a play alongside humans
can also be a way to develop more humanlike behaviors for robots.

11.3.4 Sex robots
Along with toy robots aimed at the child market, there are also embodied
robots and virtual reality (VR) interfaces for the fulfillment of adult entertain-
ment needs. Colloquially known as “sex robots,” diverse robotic platforms
offer varying levels of humanlike appearance and behavioral response. The
RealDoll company, which develops hyperrealistic sex dolls (see Figure 11.7),
is working on adding robotic capabilities, including an emotive face and
responses, to its base models. Several other producers have developed pro-
totypes of sex robots, although none has yet come to market. It is envisioned
that the sex robot industry will continue to grow over the coming years. Devlin
(2020) discusses current developments in sexual companion robots, alongwith
the psychological and social implications of these technologies.

11.4 Robots in healthcare and therapy

Healthcare and therapy represent prominent domains of application for
robotics (Riek, 2017). In these domains, social robots are used to offer
support, education, and diversion to patients, with an eye toward improving
healthcare and therapy outcomes. The practice of using social robots in
healthcare is referred to as socially assistive robotics (SAR) (Tapus et al.,
2007; Feil-Seifer and Matarić, 2011). Healthcare robots are targeted for
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Figure 11.7 The
Harmony X sex
robot by RealDoll
exhibited in a
museum (2023).

diverse populations, very often older adults (Broadbent et al., 2009; Broekens
et al., 2009). The use of robots to support care raises many ethical issues
and requires careful consideration of ethics in design (Van Wynsberghe,
2016; Stahl and Coeckelbergh, 2016), including those regarding the potential
impacts of using robots for care on people’s autonomy and independence
(Sharkey and Sharkey, 2012; Sparrow and Sparrow, 2006), the authenticity of
care relationships with robots (Turkle, 2017), and concerns about overreliance
on robots (Borenstein et al., 2017).

11.4.1 Robots for senior citizens
Robotic assistants could make a world of difference for senior citizens who
wish to stay independent as long as possible. For example, the ElliQ robot
(Figure 11.8) combines an artificial intelligence (AI) assistant-like function
(e.g., providing news updates and weather forecasts) with basic social inter-
action (e.g., sharing inspirational quotes and simple daily small talk) and
more personalized help (e.g., setting reminders, doing basic wellness checks,
helping with messaging and calling loved ones). Thus, although unable to
physically assist in daily tasks, robots like these could help people by remind-
ing them to take their medications (Pineau et al., 2003) and can provide pre-
clinic or tele-clinic support at home, thus reducing costs for medical services
(Robinson et al., 2014).
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Figure 11.8 The ElliQ
robot (2019–present)
from Intuition Robotics
is designed to interact
with senior citizens.
(Source: Intuition
Robotics)

Although senior citizens and people with mild cognitive impairments
are a key target audience for robot developers who want to offer
technology-mediated social, emotional, and cognitive rehabilitation and
diversion, there are other target groups that can benefit from social robots.

Figure 11.9 NEC’s
PaPeRo robot has
been available in
different versions,
such as PaPeRo
R-100, PaPeRo
Mini, and PaPeRo i
(1997–present).

For example, the Paro robot is a seal-like robot equipped with sensors that
allow it to detect when it is being picked up or stroked (see Figure 2.8). It
can respond by wriggling and making seal-like noises. Paro has been used
in a multitude of studies with elderly people, and positive psychological,
physiological, and social effects of long-term interaction with the robot have
been documented (Wada and Shibata, 2007). The robot is used as a companion
in care homes and stimulates not only human–robot interactions but also
interactions between the residents. It has been able to reduce feelings of lone-
liness and improve the residents’ quality of life. Paro has been commercially
available in Japan since 2006 and in the United States and Europe since 2009.
It is interesting to note that although it is purchased by many individuals
for home use in Japan, in Europe and the United States, the robot is almost
exclusively purchased by healthcare institutions and companies. Furthermore,
some robots, such as NEC’s PaPeRo (see Figure 11.9), have only ever been
released in Japan.

11.4.2 Robots for people with autism spectrum disorder
Children and adults with autism spectrum disorder (ASD) are another group
for which social robots are often developed and used. It has been shown that
people with ASD generally respond well to robots, and there has been a large
body of research looking into how robots can be effectively used to support
ASD therapy (Diehl et al., 2012; Scassellati et al., 2012; Thill et al., 2012).
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Figure 11.10 A
range of robots used
in ASD therapy.
From left to right,
Nao (2008–present),
Elvis
(2018–present),
Kaspar
(2009–present). and
Zeno
(2012–present).
(Source: Elvis,
Brubotics–Vrije
Universiteit Brussel;
Kaspar, Kerstin
Dautenhahn, Ben
Robins, Adaptive
Systems Research
Group, University
of Hertfordshire,
UK)

Many types of robots have been used in a therapeutic context to support
children with ASD (Robins et al., 2009; Pop et al., 2013). These include a
wide range from humanoid robots, such as Kaspar and Nao, to zoomorphic
robots, such as Elvis and Pleo (see Figures 11.10 and 11.11).
The predictable nature of robot behavior and the fact that robots are

nonjudgmental have been credited as potential reasons why using them
in interactions and therapeutic interventions with individuals with ASD is
successful. The robots are either used as a focal point for the interaction
between the therapist and the patient or are used to train and improve children’s
social competencies and their ability to regulate and interpret emotions.

11.4.3 Robots for rehabilitation
Robots are also used to support physical rehabilitation. This can be done
by offering physiotherapy and providing encouragement and mental support.
Social robots have been shown to be effective in cardiac-focused rehabilitation
by providing encouragement and social facilitation during cardiac exercises
(Kang et al., 2005; Lara et al., 2017). Robots can also be used to encourage
users to adopt healthy practices or to change unhealthy habits. For example,
Kidd and Breazeal (2007) describe a robot that acts as a weight-loss coach,
and Belpaeme et al. (2012) describe the use of a robot to support children

Figure 11.11 The
Kiwi robot was
designed by
researchers from the
University of
Southern California
for research into
personalized
support of children
with autism and
elderly users.
(Source: Maja
Matarić, University
of Southern
California)
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diagnosed with diabetes. Kidd’s early research developed into a robotic start-
up and healthcare robot called Mabu.
Robots can also be used as prosthetic devices. The restoration of the func-

tion of the lower limbs, arms, and hands through robotics has received consid-
erable attention (Bogue, 2009). Although these developments are largely the
concern of mechatronics, there is a role for HRI in the study of the acceptance
and usability of robotic prostheses.

Figure 11.12
Ommie
(2022-present) is a
robot that helps
people manage their
anxiety through
deep breathing.
(Source: Kayla
Matheus and Yale
University)

11.4.4 Robots to support mental health
A subset of healthcare that is getting increased attention since the COVID-19
pandemic is mental health, which is an issue of rising importance worldwide.
The development of robotic technologies to help support mental health is
concomitantly occurring in many different domains (Riek, 2016). Researchers
have been working with teenagers to develop robots that assist teens in
managing their anxiety and other mental health challenges at school (Karim
et al., 2022; Björling et al., 2020); robots to achieve anxiety reduction have
also been evaluated with adults (Matheus et al., 2022) (see Figure 11.12).
Participatory design has also been used to create robots that adults can use
to manage symptoms of depression (Lee et al., 2017; Randall et al., 2019;
Bhat et al., 2021). Along with benefiting people with mental health conditions,
robots can also be used to alleviate the burden of care for caregivers and to
improve relationships between caregivers and care receivers (Moharana et al.,
2019).

11.5 Robots as personal assistants

Smart-home assistants, unobtrusive devices that are placed in the home or
the office and are often voice-operated, have been a recent and largely
unexpected success of cloud-connected technology. Technology giants such as
Amazon, Google, Microsoft, Apple, and Samsung have raced to build voice-
operated assistants, and some offer hardware products that are built around
this technology. Amazon’s Alexa, Apple’s Siri, Microsoft’s Cortana, and the
Google Assistant have found embodiment on a range of devices, with shapes
and sizes ranging from a hockey puck to a shoebox. These devices offer a vast
range of services, but they are most often used to request simple information,
such as the time, weather, or traffic, or to stream music. These devices can
engage in only very short social exchanges, often limited to chitchat, such as
telling a joke.
Recently, a number of commercial ventures have been launched that offer

social robots as personal home assistants, perhaps eventually to rival existing
smart-home assistants. Personal robotic assistants are devices that have no
physical manipulation abilities and limited locomotion capabilities. They have
a distinct social presence and have visual features suggestive of their ability to
interact socially, such as eyes, ears, or a mouth (see Figure 11.13). They might
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Figure 11.13
Personal assistant
robots: from left to
right, the Nabaztag
robot (2009–2011),
the Jibo robot
(2017–2018), and
the Buddy robot
(2018–present).
(Source: Jibo, Jibo
Inc.; Buddy, Blue
Frog Robotics)

be motorized and can track the user around the room, giving the impression of
being aware of the people in the environment. Amazon’s Astro (Figure 2.11)
may even be able to deliver a beer, as long as someone puts it in its cupholder,
and can allow homeowners to check in on their homes while they are away.
Although personal robotic assistants provide services similar to those of smart-
home assistants, their social presence offers an opportunity that is unique to
social robots. For instance, in addition to playing music, a social personal
assistant robot would express its engagement with the music so that users
would feel like they are listening to themusic together with the robot (Hoffman
and Vanunu, 2013). These robots can be used as surveillance devices, act as
communicative intermediates, engage in richer games, tell stories, or be used
to provide encouragement or incentives.

11.6 Service robots

Service robots are designed to help humans in various onerous, often called
“dull, dirty, and dangerous,” tasks. The tasks performed by such robots
are typically simple and repetitive, and they often do not involve explicit
interaction with people. HRI research considers such robots when they operate
in everyday human contexts and therefore come into regular contact with
people, including house-cleaning and delivery robots and robots that offer
personal assistance.

11.6.1 Cleaning robots
Cleaning robots are widely used in homes. The most well-known cleaning
robot is Roomba; it is also the most commercially successful personal service
robot to date. It is a small robot, approximately 30 cm in diameter, that has
two wheels to enable it to move around, dust sensors to knowwhere it needs to
clean, cliff sensors to avoid falling down the stairs, and of course, vacuuming
capability. The initial version of the Roomba moves around randomly in
a house, turning when it comes to a wall, and over a period of time, it
manages to clean up the room. (In general, that is; pets can undermine this

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



212 Applications

goal horribly—see the accompanying box). Some more recent cleaning robots
have mapping and localization capabilities, as well as collision-avoidance
capabilities, which allow them to cause fewer problems with furniture and
other things in a house. There are many other vacuum-cleaning robots for the
home, as well as the mopping robot Scooba.

Dreaded by every pet-owning Roomba user, the Poopocalypse is the
unfortunate yet inevitable event where a pet leaves a dropping some-
where in the house, and the Roomba encounters it before the owner can
clean it up, spreading it all across the house. These incidents are common
enough that iRobot formulated an official response, warning Roomba
users not to use their Roomba unsupervised if they own a pet (Solon,
2016).

Commercial service robots coming onto the market have provided HRI
researchers with opportunities to study how people respond to and use such
robots in everyday circumstances. Fink et al. (2013) performed ethnographic
studies of Roombas in user homes to identify common use patterns, and they
also noticed how users prep their homes so that Roomba can do its job. Other
researchers have found that users sometimes like to display Roombas as a
sophisticated technology, whereas at other times, they try to disguise or hide
them because they are deemed unsightly (Sung et al., 2007, 2009). Forlizzi
and DiSalvo (2006) also explored how people’s models of service affect the
way they expect robots to interact with them, including how robots can best
recover from mistakes made while providing services, such as bringing users
the wrong drink.

11.6.2 Delivery robots
Delivery robots carry objects from one place to another. Warehouse robots
are the ones that are most frequently used, like the ones used in Amazon
warehouses. There are many start-ups that seek to provide delivery robots,
for outdoor use as well as for inside buildings. Outdoor delivery robots
include those used for delivering food and daily goods from supermarkets and
restaurants. There were serious needs for such robots during the COVID-19
pandemic, when people were asked to stay home. Although perhaps desirable
for the direct users, these robots sometimes turn out to be a nuisance for
bystanders, who have to dodge them on already-busy city streets. Robots can
also help people carry their belongings and follow them as they move around
public spaces, such as the Gita series of commercial robots.1
Mutlu and Forlizzi (2008) showed that the workflow and patient pro-

file of the hospital ward in which the Aetheon TUG delivery robot was
deployed could make the difference between a successful and unsuccessful

1 See https://piaggiofastforward.com
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implementation. Some hotels use room-service robots to deliver goods from
the service desk to guest rooms. Delivery robots are also used in restaurants
(see Figure 11.14). Because delivery robots are increasingly used in human
co-located environments, they need better HRI capabilities. For instance, a
robot in a restaurant needs to avoid obstructing customers while delivering
dishes to tables or should at least be designed in a way to let customers avoid
it without becoming annoyed by it.

Figure 11.14
BellaBot delivery
robot.

11.7 Security robots

Among the various available applications, robots used for security purposes
are among the most controversial. Robots are also commonly considered as
potential providers of security in homes and public spaces. These robots could
provide services ranging from patrolling around the environment to a police
robot that could use real force against people. A security robot that patrols
around may not necessarily invite controversy in some cultures, such as in
Japan. Some of them have a function to record unusual events, and some may
approach suspicious persons in a friendly way, without being intimidating or
scary. These robots are often designed to work with human workers, to save
their time in roaming around when no problematic events are occurring and
only asking for help in important moments. However, in some other cultures,
similar robots invited more controversy. For instance, the K5 robotic security
guard (see Figure 11.15) has been deployed at some shopping malls in the
United States. It roams around the environment to monitor crime and alerts
human authorities if it senses something suspicious. A prime example of a
service robot that was not accepted in its environment, the K5 robot has fallen
victim to a variety of abusive behaviors, ranging from an attack by a drunken
man while patrolling a parking lot in Mountain View, California, to being
tackled and covered in barbecue sauce while attempting to chase off homeless
people from a nongovernmental organization’s doorstep in San Francisco.

Figure 11.15
Knightscope K5
(2013–present).
(Source:
Knightscope)

Police robots have invited even more serious societal controversy, resulting
in prevention of their use. For instance, New York City police once tried to
use a robotic dog, Spot from Boston Dynamics, for surveillance purposes.
Having a robot to observe a dangerous place could potentially save citizen
and police lives; however, citizens were concerned about this use, and the trial
was terminated (Zaveri, 2021). Recently, even more controversy was caused
by a decision to allow robots to be used by the police as weapons against
perpetrators, even allowing for the use of “deadly force” via robot (Abené,
2022). This inspired discussion on whether police should be able to injure or
kill people using a robot, in cases where this might save the lives of citizens
or police and there is no alternative choice. The robots were initially approved
for this use; however, just a week later, San Francisco supervisors reversed
their decision and rejected such usage because of the objections from citizens
(Press, 2022). Ethics scholars have also commented on the potential lethal use
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of robots in policing, calling for a moratorium on such designs because of the
legal and technical challenges inherent in such technologies (Asaro, 2016).

11.8 Collaborative robots

Collaborative robots are gaining importance in the automation industry. Tra-
ditional industrial robots typically are stiff, strong, and have limited sensory
capabilities. Because of this, humans are not allowed near a powered industrial
robot. In contrast, collaborative robots—or co-bots, for short—have safety
features and a mechatronic design that allow them to operate near people or
even work together with people.
Some co-bots are equipped to interpret or produce social signals, such as

the Walt robot, which has a face attached to its robotic arm (see Figure 11.16).
The Baxter robot (see Figure 2.9) is a two-armed robot that is able to display a
range of facial expressions on its screen, signaling various internal states. An
embarrassed blush, for example, signals to the human coworker that the robot
is at a loss about what to do next.
The deployment of co-bots in industrial manufacturing contexts and the

workplace in general may fundamentally change the notion of collaborative
teamwork. In positive scenarios, co-bots should be able to help humans get
more pleasure and efficiency from their work. In the worst case, collaboration
with robots could backfire through a reversal of the roles of humans and robots,
leading to humans serving robots rather than vice versa.

11.9 Self-driving cars

Self-driving cars are, in essence, robots in which the user is in the passenger’s
seat. Although fully autonomous vehicles (AVs) are still not widely available,
most new cars now have some form of onboard advanced driver-assistance
system (ADAS) technologies, such as lane following, adaptive cruise control,
automatic parking, predictive braking, pedestrian protection systems, and

Figure 11.16 Walt
(2017–present), a
collaborative robot,
working at the Audi car
factory in Brussels to
apply glue to car parts.
It has a
headlight-shaped head
with an animated face
to communicate its
internal state to its
human coworkers.
(Source: Copyright
IMEC)
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blind-spot warning systems. The Society of Automotive Engineers (SAE)
International has developed a taxonomy to describe six increasing levels (SAE
levels 0 through 5) of capability for driving automation systems, which are
widely used to describe and understand these capabilities.2 Most current AVs
have achieved level 3 under the SAE standards, whereasWaymo’s 2020 safety
report claimed that its AVs had the ability of level 4, which would mean that
the AV can demonstrate 28 core competencies from the recommendations
made by the U.S. Department of Transportation. These technologies, unlike
the traditional adaptive cruise control or lane assistance, also include a safe
stop when the system fails (Waymo, 2020).
Most traditional car manufacturers, many start-up companies, and large

IT companies are currently heavily investing in the development of AVs.
Some companies already have products in the market. Although the levels
of autonomy are reasonably well defined, the terminology used by the car
industry is much more ambiguous. For example, Tesla’s cars have a driver-
assistance system that conforms to level 2 of the SAE levels of driving
automation, which the company calls “Autopilot”—a name that suggests
the far more advanced full autonomy of SAE level 5 (Layton, 2022). In its
July 14, 2020, decision (Az. 33 O 14041/19), the Munich Regional Court
ruled that Tesla branding its autonomous tech as “Autopilot” is misleading to
consumers. In May 2021, the California Department of Motor Vehicles started
to investigate Tesla over its self-driving claims (Mitchel, 2021). Starting in
2020, Tesla began stating the following on its “Autopilot” website: “Current
Autopilot features require active driver supervision and do not make the
vehicle autonomous.” Only in 2021 and after at least three years of delays
did Tesla roll out its “Full Self-Driving” software update in its beta program
(Hawkins and Lawler, 2021). The latter enables drivers who paid for the
“Autopilot” to use many driver-assist features on local, nonhighway streets.
Other manufacturers offer driving-assist features, such as adaptive cruise
control and lane following. General Motors, like many other traditional car
manufacturers, is dramatically increasing its spending on the development of
AVs (Wayland, 2021). Even Apple is developing an AV, initially envisioned
without a steering wheel or pedals but then redesigned for full autonomy only
on highways (Bloomberg, 2022).
AVs are expected to have a considerable impact on the future of transporta-

tion (Litman, 2020; National Roads and Motorists’ Association, 2018). Posi-
tive effects of AVs include the potential to be more environmentally friendly
by driving more economically (Fagnant and Kockelman, 2015). Because of
their ability to communicate with each other and with the infrastructure, AVs
are able to reduce traffic congestion by rerouting vehicles to their destinations.
They also have the potential to radically change our transportation system
because ride-sharing and even car ownership sharing become much easier to
implement. Our society could be serviced by a fleet of autonomous robotic
taxis that could even offer carpooling trips. Such AVs would also enable

2 See www.sae.org/standards/content/j3016_202104/
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people who are currently unable to drive to take advantage of an individual-
based transportation system. Children, people with disabilities, and the elderly
could safely ride to their destinations (Lutin et al., 2013).
Possibly most important, AVs are able to increase road safety (Petrovic

et al., 2020). The U.S. National Highway Traffic Safety Administration
showed that 94% of car crashes can be attributed to human error (Department
of Transportation, 2015). AVs do not get drunk, high, or distracted. They
can be programmed to comply strictly with speed limits and traffic rules.
They can even warn each other about accidents or obstacles on the road
ahead. It has even been argued that once AVs have reached a safety record
that is better than that of average human drivers, humans should be banned
from driving altogether (Sparrow and Howard, 2017). As we design and plan
for the expanded use of AVs, we need to keep in mind that the projections
regarding the lifesaving capabilities of AV use commonly assume widespread
adoption of these vehicles, in which all or a majority of cars on the roads
are autonomous. The actual capabilities of current vehicles and AV research
(Nascimento et al., 2019) and the adoption of AVs on the road are still a long
way away from this best-case scenario.
It is important, therefore, to remember that AVs are large and potentially

dangerous robots that exhibit autonomous behavior. Although AVs can avoid
some human errors, they are also likely to introduce new sources of HRI
errors. Although many social robots and conversational agents rarely pose a
threat to our physical well-being, several crashes of AVs have demonstrated
the destructive potential of these robots not only for the drivers but also for
pedestrians and cyclists. For example, Tesla cars with active autopilot have
been involved in several fatal crashes, starting as early as 20163. The first
bystander killed by an AV was Elaine Herzberg, who was struck and killed by
an autonomous Uber car onMarch 18, 2018. The accident report notes that the
autopilot was programmed with a certain threshold to continue driving even
if an abnormal sensor reading was received (National Transportation Safety
Board, 2019). This threshold is necessary because otherwise, AVs would have
to stop too frequently, creating a safety risk for others. Some risk taking is part
of conventional driving as well. For example, our streets would be much safer
if the speed limit were universally reduced to 30 km/h, but that might also
increase traffic bottlenecks and certainly the time to reach our destination.
We accept the trade-off between safety and speed in the design of our driving
rules, despite the fact that it results in thousands of deaths each year, based on
societal norms and legal frameworks. When it comes to design decisions that
govern the behavior of AVs, however, discussions are ongoing about what
the effects of various machine perception capabilities, control and planning
algorithms, and design factors would be and how to understand and manage
risk and differential outcomes to AV drivers and others sharing the road with
them (e.g., see Evans et al., 2020; Geisslinger et al., 2021; Cunneen et al.,
2019).

3 www.tesladeaths.com
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The progress in the aviation industry can serve as an example of how to
interpret the risks and possibilities of AVs as part of our transportation systems.
In the early days of aviation, piloting an airplane was incredibly dangerous.
BothWright brothers crashed with their airplanes and suffered severe injuries.
It did not stop them from building the first motorized airplane. Since then, air
travel has become one of the safest forms of transportation. According to the
National Transportation Safety Board, there is, on average, less than 1 fatality
per 100,000 flight hours.4 It has to be pointed out that most airplanes already
extensively use autopilots. Whereas the aviation industry has very strict safety
regulations, processes, and reporting, the same cannot yet be observed for
AVs. Fatal AV crashesmay receive a disproportionately large amount of media
attention, which can inhibit their development and, in turn, cost people’s lives
(Bohn, 2016). It is also important to consider that technology alone cannot
bring the desired benefits; social and physical structures and regulations will
need to be in place to support the responsible and acceptable use of AVs.
Furthermore, there are many open questions about how AVs and traditional
vehicles will be able to most successfully share the road in the extended time
of transition to more widespread adoption of AVs.
Independent, accurate, and reliable information about the safety of AVs is

necessary, similar to the reporting done in the aviation industry. Without such
clear information about the safety record of AVs, it will be difficult, if not
impossible, for people to consent to their usage, which further complicates the
regulation of risk and responsibilities. It has been shown that communicating
the risks of AVs is a challenge in itself (Bartneck and Moltchanova, 2020).
But the risk and responsibilities are still being negotiated between the manu-
facturers, insurance companies, governments, and drivers. The Department of
Motor Vehicles in California is a good example of making safety data of AVs
available publicly. California’s AV incidents are being published online and
have already been analyzed up until the year 2017 (Favaro et al., 2017).
The uptake of AVs and the associated regulatory changes are unparalleled

within the HRI community. This has partly to do with danger that AVs pose to
humans, but it is also due to their high potential usefulness. It can be argued
that AVs are the most commercially successful form of HRI. The interaction
between AVs, drivers, and other participants in the road traffic, however,
remains difficult.
Many of these systems require an effective human–machine interface for

the driver of the car. In addition, self-driving cars require interfaces that allow
them to interpret the actions and intentions of other traffic users, and the car
will need ways of expressing its intentions to other users (Brown, 2017). Car
drivers use a wide range of signals to communicate their intent to others. For
example, slowing down when nearing a crosswalk can signal to pedestrians
that they have been noticed and that it is safe to cross. The Jaguar Land Rover
developed a more explicit way of communicating with pedestrians by putting
“googly eyes” on its cars to signify attention.

4 See www.bts.gov/content/fatality-rates-mode
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Figure 11.17 A
mock-up of a
self-driving vehicle, in
which a driver is
disguised as a car seat,
used to study people’s
responses to the
behavior of self-driving
cars. (Source: Wendy
Ju)

Interaction with the driver does not only happen through the car’s interface
but also often requires autonomous technology to communicate why a deci-
sion was made. Koo et al. (2015) show how a message that explains why an
action was taken, such as automated braking, is preferred over a system that
merely reports the action.
HRI studies can help understand how traffic users and passengers respond

to autonomous cars. Rothenbücher et al. (2016) present a paradigm in which a
driver is disguised as a car seat, giving the impression that the car is self-
driving (see Figure 11.17). This deception allows for carefully controlled
studies on how people perceive and respond to self-driving cars without the
need for a fully self-driving car.
The Partners in Automated Vehicle Education showed in its 2020 report

that Americans are skeptical of current AV technology.5 Again, clear and
reliable information from independent sources is necessary to build the trust
of the general public toward AVs. Kyle Loades, the chairman of the National
Roads and Motorists’ Association, explained that the best way to adopt a new
technology and build up users’ trust is through trials (National Roads and
Motorists’ Association, 2018). The success of the trials can, of course, only
be evaluated if the resulting data are being shared openly.

11.10 Remotely operated robots

11.10.1 Applications of remotely operated robots
There are several application examples of remotely operated robots. Robots
used for planetary exploration have some autonomous navigation capability,
and they receive commands from human operators on Earth as well. PackBot
(see Figure 11.18) is a scout robot used in a military context; a human operator
tele-operates PackBot while it searches for bomb traps, thus clearing the road
for military vehicles. Also in the military context, a human operator can

5 See https://pavecampaign.org/wp-content/uploads/2020/05/PAVE-Poll_Fact-Sheet.pdf
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Figure 11.18
PackBot
(2016–present).
(Source: Endeavor
Robotics)

operate a drone from a faraway location during military operations. In search-
and-rescue scenarios, an operator controls a robot that moves on the ground
or through the sky to find a person in need.
Apart from military contexts, drones have even been used in domestic

(Obaid et al., 2020) and educational contexts (Johal et al., 2022), with such
types of drones being coined “social drones”(Baytas et al., 2019), that is,
drones that operate autonomously in spaces co-shared with humans. Tele-
operation also represents a relevant use case in the medical domain (Partikska
and Kattepur, 2022; Al Momin and Islam, 2022), for instance, when it comes
to robot-assisted surgery.
In these tele-operation scenarios, a human operator commonly needs to

work with some level of autonomy in the robot. A robot may autonomously
navigate around, but the operatormay need to provide destinations for efficient
use. The robot’s ability to avoid risks (e.g., collisions with obstacles or attacks
from a hostile entity) can be poor, and hence the operator needs to intervene
before the robots are seriously damaged.

People in the military have reported becoming very attached to their
robots, despite the fact that these were designed without any capability
for social interaction. Military robots have been named, have been
awarded battlefield promotions, and have received medals of honor from
their human supervisors (Garreau, 2007).

11.10.2 Human–robot teams
Depending on the complexity of the task and the level of autonomy, one
operator could control multiple robots, or one robot would need multiple
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operators for control. Such a human–robot team has long been a focus of HRI
research, typically in the case of robots for navigation tasks, exploring the
appropriate level of autonomy and efficient numbers of robots and humans in
a team (Goodrich and Schultz, 2008). Those studies include studies to control
a robot team (robot swarms) all at once, such as giving a command to a team
and controlling the formation of the robot team.
More recently, studies of human–robot teams have started to cover robots

used for social interaction (Glas et al., 2011). Fully autonomous robots capable
of natural social interaction are still a rather futuristic scenario; however, once
some difficult components, such as natural-language understanding and error
handling, are addressed by human operators, it will be more realistic to use
capable semiautonomous social robots in various daily-life scenarios. For this
future scenario, studies of human–robot teams are indispensable.
Operators interact with remotely operated robots via a user interface (see

Figure 11.19); here, there are many common HRI problems to address, as with
other types of human–robot interactions. For instance, the robot system needs
to acquire an appropriate level of trust from the operator—not too much, not
too little. There are similar ethical issues to be considered. For example, if the
autonomy system fails, who is responsible? Is it ethical to design a system that
would allow such a failure of autonomy?
At a more general level, the study of team dynamics involving multiple

robots and humans is highly relevant because although HRI research most
often studies dyads of mainly one robot interacting with one human, in public
spaces, such as shopping malls or museums, it is likely that a robot will
encounter multiple humans. This, of course, will bring technical challenges for
human–robot dialogue (e.g., person recognition, turn-taking, joint attention).
Work by Jung et al. (2015) has investigated the supporting role of robots in
ameliorating team conflict and has shed light on the longitudinal evolution
of trust in human–robot teams (De Visser et al., 2020); for an overview, see
Sebo et al. (2020).

Figure 11.19 The
T-HR3 robot
(2017–present) can be
remotely controlled
using a dedicated user
interface. (Source:
Toyota)
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Figure 11.20
OriHime robots are
remotely operated
by people with
disabilities, who are
depicted on the
name tags worn by
the robots. (Source:
Photos by Waki
Kamino)

11.10.3 Telepresence robots and avatar robots
Telepresence robots have started to appear on the market as well and can
be used, for example, to give a presentation at a remote place or to interact
with people in a different location. Telepresence robots can come in many
shapes, from mechanistic to zoomorphic to highly humanlike. They can be
robots with screens displaying virtual characters, representing the people who
control them. Such a robot is also referred to as an avatar robot, given that
it represents the alter ego of the person who operates it to work in their
place. Avatar robots can be used for various applications, such as customer
service, learning, entertainment, and healthcare, as explained in this chapter,
and also can be used for physical tasks (see, e.g., Figure 11.19). In the Dawn
Avatar Robot Café in Tokyo, workers with physical disabilities interact with
customers by remotely operating the humanoid telepresence robots OriHime
and OriHime-D (see Figure 11.20) (Kamino and Šabanović, 2023). Recent
research on a semiautonomous Geminoid robot, the android ERICA (Kubota
et al., 2022), showed that interlocutors even align their attitudes to those of the
robot they tele-operate. Using physically embodied telepresence robots rather
than videoconferencing systems may be particularly useful in educational
settings, such as when a student is absent because of illness (Fitter et al., 2018;
Newhart et al., 2016). It may also support long-distance learning (Schouten
et al., 2022).

11.11 Future applications

Many of the applications introduced in this chapter are already available today.
As technologies keep advancing, however, other types of future applications
will emerge. For instance, researchers envision that daily appliances can be
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more automated and connected, as a network of devices within a smart home,
for example. Several research groups also envision that individual robots can
provide interfaces for such smart homes (Bernotat et al., 2016). Researchers
have also started exploring how people might react to robotic furniture and
appliances. Sirkin et al. (2015) studied how a robot ottoman should interact
with people and also explored interactions with an interactive chest of drawers.
Yamaji et al. (2010) developed a set of social trash boxes that use social cues,
such as approaching and bowing, to motivate people to throw away their
trash; they also created a set of robotic dishes that can be summoned by a
user by rapping on the table. Osawa et al. (2009) investigated how people
may respond to home appliances being anthropomorphized, such as equipping
a refrigerator with eyes or a printer with a mouth so that it can speak to
a user.
Future developments of robots will also likely extend the capabilities within

existing application domains. For example, healthcare robots are now being
developed not only to provide companionship but also to monitor the behavior
and health status of their users (e.g., Autom) and also possibly to assist
with tasks of daily living (e.g., Care-O-bot). Educational robots may take on
more active roles in tutoring, particularly in domains such as second-language
learning (Belpaeme et al., 2015). Following data-based applications in other
domains, robots might also take advantage of their interactive capabilities
to collect different kinds of information on users. We can expect robotic
sensing and interaction capabilities to become more distributed in our lived
environment, engaging with us through various everyday devices that may
not immediately come across as robots.

11.12 Problems for robot application

There are various problems that might prevent successful market updates in
the commercial market and as applications in everyday life. These include the
potential for robot design to lead to misplaced and eventually disappointed
expectations, overreliance on and addiction to robots, misuse and abuse of
robots, and engagement with robots taking people’s attention away from other
concerns.

11.12.1 Public relations
A significant number of social robots do not seem to have any current
practical use. At best, they are communication platforms, such as Pepper.
At times, companies start developing or using robots for no other reason
than to promote themselves. Being perceived as being active in the area of
robots, AI, and cryptocurrency (feel free to extend this list with the latest
technology buzzwords) is enough for some companies to engage with the
respective technologies. Nippon Telegraph and TelephoneCorporation (NTT),
for example, started a whole subsidiary called “NTT Disruption” that bought
the failed robot Jibo (see Figure 11.13). NTTDisruption was disrupted in 2023
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and closed for good. The traditional Japanese telecom company is not alone in
its quest to inspire investors. XPeng, a Chinese electric vehicle manufacturer,
developed a rideable robotic unicorn. Kawasaki has its own rideable robotic
goat called “Bex.” Although it might be fun to ride on these robots, this can
hardly be considered a practical form of transportation.
It is not only technology companies that engage in robot public relations

(PR). Many companies buy robots without having any good use for them.
The Christchurch International Airport, for example, bought several Pepper
robots without any possibilities of a practical benefit from it. They are used
as glorified boomboxes, playing back the same information over and over
without any interaction with passengers (see Figure 11.21).

Figure 11.21
Pepper at the
Christchurch
airport.

Marketing in itself has a function in our society. Grabbing the attention of
potential customers and clients is important. But the business of attracting
attention is fast paced and relentless. A TV commercial, for example, has
a short life span. The Henn na Hotel in Tokyo started in 2015, with its
main attraction being its robotic workforce. Although this might have initially
attracted visitors, its novelty did wear off, and in 2019, the hotel reduced its
robotic workforce by half to cut down on operation costs.
Developing robots is difficult and takes time. Although PR can offer a boost

in attention and finances, it is a very unreliable foundation on which to build
a robotic future.

11.12.2 Addressing user expectations
Users often enter into interactions with robots with certain expectations,
often rooted in exposure to specific conceptions of robots in the popular
news media, fiction, or the promises made in robot advertising. The design
and presentation of robots can also inspire certain expectations in users. For
example, if a robot speaks in English, users will likely expect that it will be
able to understand spoken English. The more humanlike the robot looks, the
more human capabilities it may be expected to have. The cost of disappointing
user expectations can be that the robot is perceived as incompetent, and people
are therefore less willing to use it. Paepcke and Takayama (2010) showed
that it is possible, however, to manage user expectations by describing the
robot’s abilities realistically; in fact, it is better to set expectations lower rather
than higher. User expectations could also be managed through the design;
for example, many social robots are designed with infant-like appearances
to decrease expectations and increase tolerance for error (Hegel et al., 2010).

11.12.3 Addiction
There is a concern that robots—specifically, social robots—will make people
overreliant on the social and physical interaction offered by robotic devices.
One can easily imagine a future in which some people prefer robots as
interaction partners, perhaps even as life partners, over humans Borenstein and
Arkin (2019). A less extreme scenario would be onewhere robots are preferred
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over people for some interactions. Although this is not necessarily cause for
concern—many people already prefer online shopping over a trip to the store,
for example—we should be wary of the negative consequences of substituting
social human interaction with social robot interaction. One concern is that
robots will be seen to offer friendship, a state that, of course, is artificial to
the robot but might be perceived as genuine by the human user (Elder, 2017).
Conversations with a robot could be pleasant, even cathartic, but there is a
danger that because the robot panders to the user, offering an interaction that is
pleasing, this might make the user overreliant on the robot, causing the human
to crave the robot’s company. Because robots are most likely to be under the
control of corporations, to some extent, there is a concern that dependence,
and perhaps even addiction, will be a sought-after property in robots. Lessons
should be learned from our interaction with connected devices when designing
robots (Turkle, 2016).Gazzaley and Rosen

(2016) provide an
interesting read
about the “dark side”
of our high-tech age.

11.12.4 Attention theft
As can already be observed with mobile devices, technology attracts our
attention, and robots, too, could cause “attention theft.” Neuroscience
research has demonstrated that our attention is grabbed by motion and
sound, and this is exacerbated when the sound and movement are lifelike
and social (Posner, 2011). Robots pose an easy opportunity for attention
theft, either unintentionally or by design. When designing and deploying
robots, care should be taken that the robot has a mechanism to identify
when not to engage with the user or draw attention through its actions,
however unintentional. In particular, this should be carefully done in cases
where the robot might attract attention away from a human interaction
partner.

11.12.5 Loss of interest by user
The so-called novelty effect is frequently discussed in the HRI literature,
suggesting that people pay more attention to a novel entity and express a
preference to use it because it is unfamiliar; however, such effects are usually
not long lasting (Kanda et al., 2004; Koay et al., 2007b). Researchers have
tested various robot applications in research contexts and have revealed that
the novelty effect lasted anywhere from a few minutes to, at most, a few
months. Therefore, even if a one-shot experiment were to reveal positive
outcomes regarding the performance and evaluation of a robot, we cannot
be sure that the positive effect will prevail in the long run. Longitudinal
studies are needed to provide further evidence for positive HRI over time.
An important goal is to enable robots to sustain users’ interest over time and
across multiple interactions (Tanaka et al., 2007; Kidd and Breazeal, 2007;
Kanda et al., 2007b).
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11.12.6 Taking advantage and robot abuse
One of Asimov’s laws for robotics is that the robot should never do harm or
allow harm to be done to a human. Although this seems a necessity to attain
the level of trust that is required for humans to accept robots invading their
everyday lives, it may also provide the unintentional side effect of people
trying to take advantage of the rule. If everyone knows that self-driving cars
will automatically yield when cut off, will anyone ever let them merge? If a
patrolling robot is programmed to avoid bodily contact (lest the human get
hurt in the process), how exactly is it supposed to prevent a burglar from
running away? Tests with self-driving cars have already shown that humans
will capitalize on the robots’ tendency to avoid conflict (Liu et al., 2020).
Analyses of human–chatbot interactions indicate that users will try to get the
chatbot to engage in sexual role play (see, e.g., Brahnam and De Angeli, 2012;
Keijsers et al., 2021), even though the chatbot in this case is not intended for
that use and cannot respond in kind.

Figure 11.22 A
child kicking a robot
in a shopping mall.

Taking this behavior more to the extreme, one runs into the issue of robot
abuse. It has been noted by various scholars that a small but pervasive
minority of humans will engage in a negative way with robots when they are
left unsupervised. This tendency has been observed across countries and on
different continents—for example, Japan, (Brscić et al., 2015), South Korea
(Salvini et al., 2010), the United States (Vincent, 2017;Mosbergen, 2015), and
Denmark (Rehm and Krogsager, 2013). Moreover, although children seem
especially prone to engage in robot-bullying behavior (see Figure 11.22),
presumably due to their strong tendency to anthropomorphize and as part of
developing their social skills, adults have also been recorded kicking, hitting,
and verbally abusing robots.
Notably, the abusive behavior that is generally displayed shares more

similarities with intimidation and bullying than with vandalism. This makes
sense, considering that robots are recognized as social agents by humans.
The exact motivation for why people bully robots has not been found out
yet, although frustration (Mutlu and Forlizzi, 2008), entertainment (Rehm and
Krogsager, 2013), and curiosity (Nomura et al., 2016) have been suggested to
play a role.
Robot abuse poses a number of problems. Obviously, a robot that is

repeatedly attacked (as reported by e.g. Salvini et al., 2010; Mosbergen, 2015)
may get damaged andwill need to be replaced or repaired, and for this duration
of time, it will not be able to fulfill its tasks. Similarly, obstruction (as observed
by Brscić et al., 2015; Mutlu and Forlizzi, 2008) will prevent a robot from
carrying out whatever it needs to carry out to be useful. Moreover, tackling
(Vincent, 2017) or stepping in front of a moving robot (Liu et al., 2020;
Brscić et al., 2015) may result in a collision, which may not only damage the
robot but also injure any humans involved. Verbal abuse, although perhaps not
directly disruptive to the task, may still disturb any bystanders and make them
uncomfortable.
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Unfortunately, abusive behavior has been shown to be remarkably per-
sistent. Verbal reprimands or requests to stop from the robots have been
shown to have little effect. Shutting down until the abuse has stopped (Ku
et al., 2018) or running away from the bullies (Brscić et al., 2015) have been
somewhat successful, but these methods may not always be feasible. Active
intervention from bystanders has been shown to be unlikely, both in field
studies (Salvini et al., 2010; Rehm and Krogsager, 2013) and in experimental
settings (Tan et al., 2018). The field of HRI will have to continue investigating
the motivation behind and effective deterring of these human behaviors in
order to allow robots to effectively do their jobs in society.

11.13 Conclusion

Markets for robots are growing (Haegele, 2016), but many of the robots
that are available on the market still feature limited capabilities for social
interaction, for instance, pet robots and service robots. In the domain of
navigation, great strides have been made, as documented by applications
such as delivery robots and self-driving cars. Before deploying any such
technologies, empirical research and evaluation studies need to be conducted
in order to test and validate the new technologies and get them ready for the
market. With more research in open-ended, real-world contexts, it is likely
that researchers will come up with new application concepts for robots and
find novel niches that existing robotic technologies can successfully occupy.

Questions for you to think about:

• Try to think about a couple of new future applications that are not yet
mentioned in the chapter. For each application that comes to mind,
briefly describe possible technical problems and solutions.

• Suppose you would be able to prepare the technical solutions for the
applications you thought of in the previous question. Think about
market potential: Who are the targeted users, how expensive will your
robots be, and which consumers would be willing to buy the respective
robots?

• Suppose your applications are successful in terms of technical prepara-
tion and the potential market. What problems might they cause? How
would you avoid or at least reduce such problems?

11.14 Exercises

The answers to these questions are available in the Appendix.

** Exercise 11.1 Application areas What roles are social robots likely to
play in the field of education? Select one or more options from the following
list:
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Platform for learning how to program1.
Janitor2.
Student3.
Tutor4.
Teachable agent5.
Principal6.

** Exercise 11.2 Application areas In which application areas are social
robots expected to make a strong impact? Select one or more options from the
following list:

Politics1.
Cleaning2.
Military3.
Therapy for mental illness4.
Tour guiding5.
Burglary6.

** Exercise 11.3 Autonomous vehicles What benefits are AVs expected to
deliver to society? Select one or more options from the following list:

Reduce traffic congestion1.
Enable people with disabilities to ride2.
Enable elderly to ride3.
Reduce price of vehicles4.
Enable better car co-ownership5.
Enable children to drive6.
Reduce fuel price7.
Increase driving speed8.
Reduce electricity consumption9.
Improve road safety10.
Increase number of vehicles on the road11.
Reduce emissions12.
Increase number of colors for cars13.

* Exercise 11.4 Robots and their applications Select the true statements
from the following list:

BellaBot is a delivery robot.1.
PackBot is a delivery robot.2.
K5 is a cleaning robot.3.
Jibo is a tele-operated robot.4.
Roomba is a cleaning robot.5.

* Exercise 11.5 Dependency Humans do not abuse robots. True or false?

True1.
False2.
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Future reading:

• The International Federation of Robotics publishes theWorld Robotics
Report each year. (Part of the report is free to download:
https://ifr.org/free-downloads/).

• Broekens, Joost, Heerink, Marcel, and Rosendal, Henk. Assistive
social robots in elderly care: A review. Gerontechnology, 8(2):94–
103, 2009. doi: 10.4017/gt.2009.08.02.002.00. URL https:
//doi.org/10.4017/gt.2009.08.02.002.00

• Ford, Martin. The Rise of the Robots: Technology and the Threat of
Mass Unemployment. Oneworld Publications, London, 2015. ISBN
978-0465059997. URL http://worldcat.org/oclc/993846206

• Leite, Iolanda, Martinho, Carlos, and Paiva, Ana. Social robots for
long-term interaction: A survey. International Journal of Social
Robotics, 5(2):291–308, 2013. doi: 10.1007/s12369-013-0178-y.
URL https://doi.org/10.1007/s12369-013-0178-y

• Nourbakhsh, Illah Reza. Robot Futures. MIT Press, Cambridge, MA,
2013. ISBN 9780262018623. URL http://worldcat.org/oclc/945438
245

• Belpaeme, Tony, Kennedy, James, Ramachandran, Aditi, Scassellati,
Brian, and Tanaka, Fumihide. Social robots for education: A review.
Science Robotics, 3(21):eaat5954, 2018. doi: 10.1126/scirobotics.aa
t5954. URL http://doi.org/10.1126/scirobotics.aat5954
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12

Robots in Society

What is covered in this chapter:

• The influence of the media on human–robot interaction (HRI)
research.

• Stereotypes of robots in the media.
• Positive and negative visions of HRI.
• Ethical considerations when designing an HRI study.
• Ethical issues of robots that fulfill a user’s emotional needs.
• The dilemmas associated with behavior toward robots (e.g., robots’
right to be treated in a moral way).

• The issue of job losses as a result of the increasing number of robots
in the workforce.

The discussion of robots in society often brings up questions about how
we envision robots in the present and future and the social and ethical
consequences of using robots in different tasks and contexts. Researchers,
the media, and members of the public argue over how robots will affect our
perceptions of and interactions with other humans, what the consequences of
new robotic technologies will be for labor distribution and relations, and what
should be considered socially and ethically appropriate uses of robots. This
kind of exploration is crucial to the field of human–robot interaction (HRI)
because understanding the societal meaning, significance, and consequences
of HRI research will ensure that new robotic technologies fit our common
social values and goals. To understand how robots might fit into society,
we take a broad view of HRI through the lens of culture and the narratives,
values, and practices that provide the context and tools with which people
make sense of the world around them and the robots that will be coming to
share it.
In this chapter, we look at robots in fiction and film (Section 12.1), two

aspects of popular culture that have had particularly strong impacts on how
we imagine robotic technology in society. In Section 12.2, we consider ethical
concerns about the introduction and use of robots in society to reflect on
how our values and priorities should be taken into account while shaping the
human–robot interactions of the future. In recent years, there has also been
increased focus on considering diversity and inclusion in HRI—in terms of
considering more inclusive robot design practices, working with a broader
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array of demographic groups in user studies, and considering the potential
effects of robot deployment and use with diverse stakeholders in various
use cases.

12.1 Robots in popular media

What movies have become popular with audiences or critics recently? Is there
a TV series that went viral or an episode that everyone is talking about?
Did any of those contain robots, by chance? If so, how were these machines
portrayed? Looking into the literature and other media, it becomes clear that
robots have always been a “hot topic” for sci-fi writers and avid consumers.
Historically, stories of artificial human beings, such as the Golem in Jewish

folklore, have been around for hundreds of years. Karel Čapek was the first
author to use the word robot, which was featured in his theater play R.U.R.—
Rossum’s Universal Robots that premiered in 1921 (see Figure 12.1). In
it, robots take over the world and kill almost all humans. Two robots do,
however, start to exhibit emotions for each other, and the last remaining human
considers them to be the new Adam and Eve. Isaac Asimov, in turn, coined
the term robotics as a field of study, as well as the yet-to-be-realized domain
of robopsychology, which could be seen as having some overlap with HRI.
The notion of robots that befriend humans and aid society is a central focus
of the post-WW2 narrative of Osamu Tezuka’s Astro Boy series, centering
on a robotic boy who lives with a family, has a heart, and works to help his
human friends. Some robotics projects, such as the HRP-2 humanoid, bring
inspiration from fictional narratives to life—in this case, the robot’s functions
of aiding people in construction work, moving objects, and other physical
tasks are not only inspired by the manga series Patlabor, but its appearance
is designed by Yutaka Izubuchi, the mechanical animation designer for the
manga and anime series Kaneko et al. (2004).

Figure 12.1 A
scene from Čapek’s
1921 play R.U.R.
shows robots
rebelling against
their human
masters.

Now think back to when you first heard about robots. This first encounter
with a robot was likely an on-screen encounter. Computer graphics can
nowadays visualize almost anything; hence, depictions of robots in movies
can be quite fantastical. For example, movies have depicted robots that use
antigravity to float around. In reality, there is little use for such robot hardware
features. Robots have been portrayed in all types of artistic expressions, such
as books, movies, plays, and computer games. Such media portrayals form
our perceptions and understanding of robots and can thus bias our views,
particularly because these are the only experiences most people have with
robots. We are at an interesting point in time where, on the one hand, more
and more robots are about to enter our everyday lives, but on the other hand,
almost all our public knowledge about robots stems from the media. This gap
between the expectations fueled by science fiction and the actual abilities of
robots often leads to disappointment when people interact with robots. This
is why it is important to look at how robots are portrayed in popular media
and to take such portrayals into account when we are designing robots for and
presenting them to the public.

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



12.1 Robots in popular media 231

As a disclaimer, we have to acknowledge that it was not possible for us
to consider every robot mentioned in every book, film, computer game,
newspaper article, or play. Still, some valid conclusions might be drawn
from the more or less classic examples that will be reiterated in the
following discussion.

12.1.1 Robots want to be humans
In many narratives, robots are portrayed as wanting to be like humans, despite
their actual superiority to humans, for instance, in terms of strength and
computational power. To illustrate, the very desire to become human is the
central storyline for Isaac Asimov’sBicentennialMan, in which a robot named
Andrew Martin is following a lifelong plan to become recognized as a human
(Asimov, 1976). The book was used as the basis for a movie of the same name,
released in 1999. Besides becoming physically more humanlike, Andrew
Martin also fights a legal battle to gain full legal status. He is even prepared
to accept mortality to gain full legal status. Other robots, such as the replicant
Rachael in the movie Blade Runner based on the book by Philip K. Dick,
are not even aware of the fact that they are robots (Dick, 2007). The same
holds true for some of the humanlike Cylons in the 2004 TV series Battlestar
Galactica.
On the contrary, a prime example of a robotic character that is aware

of its robotic nature is Mr. Data from the TV series Star Trek: The Next
Generation. Mr. Data is stronger than humans; has more computational power
than humans; and does not need sleep, nutrition, or oxygen. Still, this character
is set up to have the desire to become more humanlike. The key aspect,
however, that actually distinguishes Mr. Data from humans is his lack of
emotion. Similarly, in Steven Spielberg’s movie A.I. (based on Brian Aldiss’s
short story Super-Toys Last All Summer Long), robots also lack emotions
(Aldiss, 2001), which prompts Professor Allen Hobby to build the protagonist
robot David with the ability to love. Likewise, sci-fi authors have considered
emotions to be a feature that all robots would lack. However, in reality, several
computational systems to mirror emotions have already been successfully
implemented. The computer programs implementing the so-calledOCCmodel
of emotions (Ortony et al., 1988) are prime examples. Equipping robots with
emotions in the attempt to make them human is therefore an archetypal
storyline.
A more subtle variation of this narrative concerns the inclusion of a

control or setting for honesty and humor, as depicted in the robots from the
movie Interstellar. The following dialogue between Cooper, the captain of a
spaceship, and the TARS robot emerges:

COOPER: Hey, TARS, what’s your honesty parameter?
TARS: Ninety percent.
COOPER: Ninety percent?
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TARS: Absolute honesty isn’t always the most diplomatic nor the safest
form of communication with emotional beings.

COOPER: Okay, ninety percent it is.

Although robots might not have emotions themselves, they will be required
to interact with humans who do have emotions, and hence it will be necessary
for them to process emotions and even adjust their rational behavior accord-
ingly.
The aforementioned classic examples taken from contemporary film are

only the tip of the iceberg, but they illustrate humans’ steady desire to compare
themselves to superhuman entities. A hundred years ago, however, there were
already machines that were more powerful than humans, although their power
was physical and not mental. These days, we can see the major progress in
the area of artificial intelligence (AI). On May 11, 1997, the IBM computer
“Deep Blue” won the first chess match against the world champion at the
time. In 2011, the IBM computer Watson won as a contestant in the quiz
game show Jeopardy. In 2017, Google’s DeepMind AlphaGo defeated the
world’s number-one Go player, Ke Jie. In light of this progress, it is easy to
imagine how robots in the future might be both strong and intelligent, leaving
humans in an inferior position. At the same time, computers and robots are
successful in limited task domains, so humansmay have the advantage through
their ability to adapt and generalize to different tasks and contexts. Fictional
narratives let us explore the consequences of these and other possibilities from
the safety of our couches.

Figure 12.2 The
Terminator. (Source:
Dick Thomas
Johnson)

12.1.2 Robots as a threat to humanity
Another archetypal storyline that continuously reappears in fiction is that of
a robotic uprising. In short, humanity builds intelligent and strong robots.
The robots decide to take over the world and enslave or kill all humans in
order to secure resources for themselves (Barrat, 2015). Karel Čapek’s original
play, mentioned earlier, already introduced this narrative. Going back to the
example of Mr. Data, he has a brother named Lore who possesses an emotion
chip. Lore follows the path of not wanting to be like a human but instead
wanting to enslave humanity. Other popular examples are The Terminator
(Cameron, 1984) (see Figure 12.2), the Cylons in Battlestar Galactica, the
Machines portrayed in the movie The Matrix, and the robots portrayed in the
2004 movie iRobot (which is based on the book by the same name authored
by Isaac Asimov (Asimov, 1991)). Asimov coined the term Frankenstein
complex to describe the notion that robots would take over the world.
This archetype builds on two assumptions. First, robots resemble humans.

The robots depicted in the aforementioned movies and shows have been
designed to look, think, and act like their creators. However, they exceed
their creators in intelligence and power. Second, once they interact with the
now “inferior” human species, robots dehumanize their subordinates, a theme
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familiar in examples from human history as well. Many colonial powers
declared indigenous populations as nonhumans in an attempt to vindicate
the atrocities committed toward them. Accordingly, because robots resemble
humans, they will also enslave and kill humans. However, this rationale is
overly simplistic. The issue of a perceived threat to distinctiveness is also
addressed in the psychological literature (Ferrari et al., 2016). If you want to
learn more about the psychology of feeling threatened by robots, then consider
reading the work of Złotowski et al. (2017).
The movie Ex Machina (Garland, 2014) combines the archetypes just

discussed (robots pretending to be human and robots taking over) with an
interesting twist. Human protagonist Caleb falls in love with robot protagonist
Ava, who, unbeknownst to him, has been designed to be his dream woman.
The two grow an apparent emotional attachment, and Ava begs Caleb to help
her escape from the lab where she is kept. However, after Caleb does so, she
reveals that she manipulated him in order to escape, then leaves him trapped
in the same lab with no possibility of escape. Although the movie adheres to
the archetype that emotions displayed by robots are not real and that robots are
hostile toward humans, it gives both paradigms a twist because Ava’s behavior
originates from her (very human) outrage at being exploited and kept prisoner.

12.1.3 Superior robots being good
Several science-fiction authors have already proposed future scenarios in
which superior robots quietly influence human society. In Isaac Asimov’s
Prelude to Foundation, he describes a robotic first minister, Eto Demerzel
(a.k.a. R. Daneel Olivaw), who keeps the empire on the right track (Asimov,
1988). Interestingly, he hides his robotic nature. He is a very humanlike robot
in appearance but resorts to various strategies to blend in. For example, he eats
food, despite the fact that he cannot digest it. He collects it in a pouch that can
be emptied later. Here we have a scenario in which a superior being works to
help human society behind the scenes.
The notion of robots being evil and humans being good is most persistent

in Western culture. Robots are extremely popular in the Japanese media, and
there we can observe a different relationship between humans and robots:
robots, such as Astro Boy and Doraemon, are good-natured characters that
help humans in their daily lives. This more positive spin on the social uses
and consequences of robots is often seen as being partially responsible for the
large number of personal and home robots being developed in Japan and their
perceived higher acceptance there than in Western societies.

12.1.4 Similarity between humans and robots
The common theme between all these science-fiction narratives concerns the
fact that all of them explore the question of to what degree humans and robots
are alike. From a conceptual point of view, robots are typically portrayed
by emphasizing either their similarities to humans or lack thereof in terms
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Table 12.1 Topics of
HRI in media
portrayals.

Mind

Similar Different

Body Similar Type I Type II
Different Type III Type IV

of the robot’s body and mind (see Table 12.1). Dixon supports this view by
stating that artists explore the deep-seated fears and fascinations associated
withmachine embodiment in relation to two distinct themes: the humanization
of machines and the dehumanization of humans (Dixon, 2004; Haslam, 2006).
These four types of topics can, of course, be mixed. If we take the example

of Mr. Data, at the superficial level, he looks very much like a human, which
sets our expectations accordingly (Type II). It then appears dramatic and
surprising if Mr. Data can enter the vacuum of space without being damaged.
In the movie Prometheus, the android David is wearing a space suit when
walking on an alien planet. Wearing this suit does not serve a functional
purpose because David does not require air. The dialogue unfolds as follows:

CHARLIE HOLLOWAY: David, why are you wearing a suit, man?
DAVID: I beg your pardon?
CHARLIE HOLLOWAY: You don’t breathe, remember? So, why wear the suit?
DAVID: I was designed like this, because you people are more comfortable
interacting with your own kind. If I didn’t wear the suit, it would defeat
the purpose.

Again, the human embodiment sets our expectations, and when a difference
from humans is displayed, it surprises the audience. Godfried-Willem Raes
takes a different approach with his robot orchestra. He emphasizes the equality
of robots and humans in his theatrical performances (Type I). He argues:

If these robots conceal nothing, it is fairly self-evident that when their
functioning is made dependent on human input and interaction, this
human input is also provided naked. The naked human in confrontation
with the nakedmachine reveals the simple fact that humans, too, are actu-
ally machines, albeit fundamentally more refined and efficient machines
than our musical robots.

An example of Type III could be Johnny Five from the 1986 movie Short
Circuit. Although Johnny Five has a distinctively robotic body, he does
express human emotions, which suggests that his mind is similar to that of
humans.

12.1.5 Narratives of robotic science
Ben Goldacre has pointed out how the media promotes the public misunder-
standing of science (Goldacre, 2008). Two narratives that the media frequently
uses are science-scare stories and wacky science stories.
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The performance of autonomous vehicles, which can also be considered a
form of HRI, is currently the target of immense scrutiny. The crash statistics
provided by Tesla, Waymo, and others indicate that they are performing better
than humans. Tesla, for example,1 showed that driving using the vehicle’s
autopilot feature reduces the probability of crashes dramatically.
One question that almost all reporters ask when interviewing HRI

researchers focuses on when robots will actually take over the world. The
goal, then, is to write a story that scares the public and hence attracts attention.
A story entitled “Robots Are Harmless and Almost Useless” is very unlikely
to get published. But that is what most HRI projects come down to at this
point in time. The question of whether and when robots will take over the
world addresses our inner fears and fascinations involving interacting with
robots. It reflects the ambivalent attitudes we might hold toward robots—on
the one hand, robots are viewed as an asset and support in everyday life, but
on the other hand, the prospect of a hybrid society appears threatening to
many because they fear losing their jobs or finding their privacy breached, for
example.
We may ask ourselves why the ambivalent portrayals of robots are so

persistent in the media. The most obvious answer is that many storylines call
for a “conflict” to make a storyline more interesting. A (science-) fictional
world in which everybody is happily living ever after is unlikely to capture
the attention of a broader audience. Pitching evil robots against good humans
not only serves the purpose of creating ambivalence but also triggers an “in-
group” effect (Ferrari et al., 2016; Złotowski et al., 2017). Humans often show
the tendency to defend our species against “out-group” robots. This division
can then be challenged by introducing robots that are indistinguishable from
humans, such as in the TV shows Battlestar Galactica and Westworld. This
creates great uncertainty, which in turn creates tension. Notable exceptions
from the gloomy visions in the media are the TV series Futurama by Matt
Groening and the movie Robot and Frank by Jake Schreier, both of which
depict a vision of the future in which humans and robots live peacefully side
by side, even becoming friends. In the movie Her, the protagonist Theodore,
played by Joaquin Phoenix, falls in love with his AI mobile phone Samantha
(Jonze, 2013).
On the other hand, media representations of robot technologies can be

biased in the sense that they fit the wacky science narrative. This narrative
resonates with pop science, is less prevalent, and serves to entertain rather
than to report scientific progress (Berghuis, 2017).
Because the interest in all technologies that feature AI is still growing, many

HRI researchers are invited for interviews. This offers a great opportunity
for them to showcase their work, but at the same time, media coverage also
carries considerable risk. To illustrate, a reporter might intend to write a scare
story or even a wacky science story, without always giving that goal away. In
light of the extensive media attention that HRI researchers commonly get, it

1 See www.tesla.com/VehicleSafetyReport
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might be advisable to participate in media training sessions before engaging
with journalists. Such training sessions are offered at many universities and
research institutes, and taking part in such training can minimize misrepre-
sentations and detrimental outcomes of encounters with journalists who want
to cover social robots and AI. As a general guideline for talking to the media,
it appears advisable to stick to the research that was actually performed and
avoid engaging in wild speculations about topics that were not covered in the
study at hand. It might be helpful to clarify before an actual interview which
questions will be asked and to request to view a manuscript draft prior to
publication. Thereby, misunderstandings or misrepresentations of the science
involved can be corrected prior to publication.
HRI researchers cannot shy away from representations of robots in the

media, fictional or otherwise, and the elicitation of associated hopes and fears
that create ambivalence toward robots (Stapels and Eyssel, 2022). In actual
HRI research, we invite people to engage with robots, and every single person
who interacts with a robot does so with certain attitudes, ambivalence, or
hopes and expectations of what the robot can and cannot do. Many of these
expectations are grounded in science fiction and potentially biased reports in
the media rather than the annals of scientific research.

12.2 Ethics in HRI

Is it okay to develop and sell a sex robot, which is always willing to do what
you want and will stay forever young and fit? Would you have your parents
be taken care of by a carebot instead of a human nurse?
Roboticists and philosophers alike have long been concerned with such

ethical issues in robotics, coining a shared domain of scholarship called
roboethics. More recently, a group of HRI scholars formulated five ethical
rules, which they call their Principles of Robotics, to raise broader awareness
about the role of ethics in HRI.2 Ethical rules have also been a subject of
discussion in popular literature, particularly the well-known “Three Laws
of Robotics” (see the accompanying text box). Moreover, work by Fosch-
Villaronga et al. (2020) outlines the ethical, legal, and social (ELS) implica-
tions that emerge when reflecting on HRI. A recent overview by Wullenkord
and Eyssel (2020) outlines the various overarching challenges associated with
social robots and HRI in a diverse set of contexts.

Figure 12.3 Isaac
Asimov (January 2,
1920–April 6,
1992).

Isaac Asimov (January 2, 1920–April 6, 1992; see Figure 12.3) proposed
three rules of robotics that would safeguard humanity from malevolent
robots:

1. A robot may not injure a human being or, through inaction, allow a
human being to come to harm.

2 See https://doi.org/10.1080/09540091.2016.1271400
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2. A robot must obey the orders given to it by human beings except
where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does
not conflict with the First or Second Laws.

Although Asimov’s work is highly visible in the public media, it has been
criticized by philosophers, and it is clear even from the stories that the
three rules are not a practical guide to satisfying ethical requirements for
designing robots. Asimov eventually added a zeroth law:

0. A robot may not harm humanity or, by inaction, allow humanity to
come to harm.

This clearly marks the relevance of debating issues such as the ubiquitous
deployment of robots in future society; their use in home and care contexts;
the implications of developing autonomous weapons systems and autonomous
cars; or, giving it a seemingly positive touch, the development of robots for
attachment, love, or sex.
These days, many robotics research projects envision robots as conducting

acts on behalf of humans, such as killing others; doing “dull, dirty, and danger-
ous” tasks; or serving to fulfill humans’ need for psychological closeness and
sexuality. Some of these projects are even funded by government agencies.
At the same time, there are clear counter-movements, such as the Campaign
Against Killer Robots.3 As responsible researchers, we have to consider the
ethical implications of what we envision and the steps we take to approach
these visions of the future (Sparrow, 2011). In the following subsections, we
discuss some of the common topics of ethical concern in HRI research.

12.2.1 Robots in research
As a student beginning to get hands-on experience with empirical research
in HRI, you might plan to conduct a study with a robot that acts seemingly
autonomously. Even here, ethics has to be considered because you might
choose to deceive your participants by controlling your robot using the
Wizard-of-Oz approach. You thereby make the participants believe that the
robot has certain functions, whereas in reality, you control the robot’s behavior
in the background. The problem with this approach is that the deception
concerning the robot’s skills raises and biases users’ hopes and expectations
about the robot’s abilities. This maymanipulate them into thinking that robotic
technology is more advanced than it actually is (Riek, 2012).
Another critical example to consider might be the use of robots as per-

suasive communicators within your research project. Previous research on
persuasive technology has shown that robots can be used to manipulate people
into changing not only their attitudes but also their behaviors (Brandstetter

3 See www.stopkillerrobots.org/
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et al., 2017). Examples of behaviors that have been successfully influenced
include health-related habits, such as exercising or maintaining a healthy diet
(Kiesler et al., 2008). Even if it might benefit people to change their health-
related habits, such as smoking less and exercising more, instrumentalizing
social robots for this purpose poses ethical concerns if they exploit the
social bond with the user and influence the user without the user’s explicit
consent and conscious knowledge or understanding of how he or she is
being influenced. The notion of robot deception and manipulation is not easy
to disentangle because these constructs remain ill-defined and distinct but
related. Moreover, generally speaking, deception is a characteristic that marks
empirical experimental research with humans and robots alike, in order not to
reveal the true nature of the research questions at hand. This overlaps with the
deceptive nature of robots and their capabilities—which may lead naive users
to believe that robots indeed possess intentions, emotions, a mind, or other
essentially human qualities (see Chapter 8).

12.2.2 Robots to fulfill emotional needs

Robotic care
Imagine your grandmother has been given a robot companion by a group of
researchers. They tell her that this new technological friend will stay with her
in her home for the next three weeks. She interacts with the robot every day
for these three weeks, and over time, she becomes quite attached to it. The
robot invites her to do activities like memory games on a regular basis. It
asks her how she is doing and whether she slept well; it keeps her company,
and it never argues with her. She is delighted with her new companion, and
life is good. That is, until the researchers come back and ask her to complete
some questionnaires before packing up the robot and taking it away. The dull
routine of the elderly care center creeps back, and she feels even more lonely
than before.
This brief scenario gives a glimpse of the psychological experience of

getting attached—not only to people but also to objects like robots. HRI
researchers have shown how easily people grow attached to a robot, evenwhen
it only briefly enters their everyday lives (Šabanović et al., 2014; Forlizzi and
DiSalvo, 2006; Chang and Šabanović, 2015; Kidd and Breazeal, 2008). The
emotional and social consequences of withdrawing this source of attention and
“artificial affection” clearly need to be considered when running case studies
with a social robot that has to be returned at the end of the study.
Relatedly, Steil et al. (2019) have proposed an ethical perspective reflecting

the challenges associated with the use of robots in medical domains, which
usually involve vulnerable populations like children, the elderly, or persons
with cognitive or physical impairments.
Other studies, however, have demonstrated the beneficial effect of deploy-

ing small-scale robots, such as the therapeutic robot Paro (Wada and Shibata,
2007; Shibata, 2012) or the robot dog Aibo (Broekens et al., 2009). These
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robots are not able to do any tedious manual labor, but they can provide
companionship. Given the high workload that caretakers are burdened with,
any relief, even small, is likely welcomed.
Manzeschke (2019) reflects on ethics in care contexts, with a particular

focus on taking into account the different types of human–robot relationships.
For instance, the robot is viewed as a mere tool, the robot is deemed a tool with
social capabilities, or the robot is interpreted as a relationship partner. Above
and beyond, Sparrow and Sparrow (2006) offer an interesting perspective on
robotic care that has become a classic in the literature. They argue that even
when a robotic caregiver can be developed that is capable of providing superb
emotional and physical care, it would still be unethical to outsource care to
machines. The reason for this is that a relationship can only be meaningful
when it is between two entities that are capable of experiencing reciprocal
affect and concern; an imitation of caring, however perfect, should never
substitute the real product. This kind of relationship may also be detrimental
to the value of upholding a person’s dignity. This brings us to the ethics of
developing a deeper emotional attachment to a robot (Law et al., 2022).

Emotional attachment to robots
Affection toward robots can go deeper and beyond the care setting. Humans
may start to favor robot companions over humans. Imagine a social robot
that can truly mimic friendship and emotional support, such as the android
Klara in Kazuo Ishiguro’s novelKlara and the Sun. This “ideal robotic friend”
comes with all the perks of a human friend, never complains, and learns
never to annoy its owner. Slowly, people could come to prefer these robotic
companions over their human peers, who would not be able to measure up
to the high standards that robotic friends provide. Would such a future be
desirable? What would be the broader societal consequences of supporting
the development of human–robot relationships?
Even though users may project all kinds of human traits onto a robot,

the robot is not able to experience those traits in the same way humans do,
and therefore, the authenticity of the expression can be doubted (Turkle,
2017). Still, robots are sometimes specifically designed to express social cues
to deliberately facilitate bonding with them. The authenticity of feelings is
normally important in human–human interaction, and we do not know how
humans will react to robots that express themselves based on calculations
rather than the sensation of emotions.
Going beyond human–robot friendship, there are individuals who feel

closeness and intimacy toward robots. The broader question is whether
promoting human–robot emotional bonds is desirable (Borenstein and Arkin,
2019). After all, we have to realize that the emotional relationship between
humans and robots might be asymmetrical. Humans might nevertheless be
quite satisfied with the robot exhibiting sympathetic responses, whether the
robot has a humanlike sensation of attachment or not.
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Ethical implications of persuasion through robots
Language develops dynamically, and every participant in discourse influences
its development simply through its usage. New words appear (e.g., “to
google”), others change their meaning (e.g., gay), and yet other words fall out
of usage altogether. We can use Siri, Cortana, or Bixby to control our phones,
homes, or shopping tours.
Familiarity alone will influence our attitudes toward concepts, political

ideas, and products; this is called the mere exposure effect (Zajonc, 1968).
The more often people hear a word, the more positive their attitude toward this
word becomes. One day, it will make a great difference if your smart-shopping
robot proposes to purchase “Pepsi” compared to offering a “Coca-Cola.” The
question really is who gets to decide what words our artificial counterparts use.
Robots have the ability to synchronize their vocabulary through the internet

in seconds. Even the mass media cannot compete with this level of consistent
usage of selected words (Brandstetter et al., 2017). Because of its ability to
communicate in humanlike ways, a robot can be a convincing, persuasive
communicator.
This comes with negative implications, though: without us even noticing,

computers and robots can influence what words we use and how we feel about
them. This can and probably is happening already, and we need to develop
media and language competency to be able to withstand attempts to influence
our views. With the ever more personalized and intimate relationships that we
form with technologies, we are increasingly vulnerable. We probably already
spend more time with our phones than with our partners and friends.
Furthermore, to our knowledge, there are no regulations or policies in place

at this point in time to supervise how large information technology companies,
such as Google, Amazon, or Facebook, influence the usage of language,
although there is concern about “fake news” and the difficulty of telling fact
from fiction in online contexts. It might also be a better approach to regulate
the development of our language only to the degree that it should be left to
its natural flow of change. With powerful tools at our fingertips, we need to
ensure that no company or government can influence our language without
our consent and that the robots we design do not become just one additional
persuasive and misleading technology.

Generalizing abusive behavior toward robots
Being recognized as a social interaction partner comes with a downside: not
all social behaviors aimed at you are positive. In a few field experiments with
autonomous robots that were left unsupervised in public spaces, people were
observed attempting to intimidate and bully robots (Brscić et al., 2015; Salvini
et al., 2010). It is noteworthy that the type of aggression that people displayed
seemed to resemble human–human abuse, such as kicking, slapping, insulting,
and refusing to move out of the way after the robot politely asked. Abuse that
would be more meaningful for machines, such as unplugging them or cutting
their wires, was not observed.
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Robots normally do not experience any pain or humiliation, hence, the
human actually faces greater danger than the robot when, for example,
slapping the robot because the human might hurt his or her hand. But there
are more issues to consider than just the bully’s bodily integrity. It has been
argued that bullying a robot is a moral offense—even though nobody gets
hurt, responding with violence is still considered wrong and should therefore
be discouraged (Whitby, 2008). In addition, scholars have argued that if this
behavior is perceived as acceptable, it might generalize to other social agents,
such as animals and humans (Whitby, 2008; De Angeli, 2009). This transfer of
negative behavior from a humanlike agent to actual humans is argued to also
happen in other domains, such as violent computer games (Sparrow, 2017;
Darling, 2012), and has been a topic of discussion for quite a while. Further
research on this topic is still needed.
A related issue is that interactions with a robot may raise expectations

regarding the behavior of other humans. This has been argued to be partic-
ularly dangerous in the domain of sex. A robot could easily be designed to
seem to desire intercourse at any time and to readily and fully comply with
any wishes of the user without having any desires or demands of its own. This
could change what people consider normal or appropriate behavior from an
intimate partner.
This issue becomes even more problematic if the robot is specifically

designed for sexual behaviors that would be considered wrong if it involved
human partners. For example, child-shaped sex robots could be designed
to fit the desires of pedophiles, or sex robots could be programmed to
explicitly not consent to or even struggle against sex in order for users to
play out their rape fantasies. These robot behavior designs have been deemed
ethically inappropriate by some scholars (for a philosophical justification,
see Sparrow, 2017). Others, like David Levy and Hooman Samani, have
set out to suggest (even back in the early 2000s) that love and sex with a
robot would be a contemporary reality. We are still not there yet. Döring and
Poeschl (2019) analyzed fictional and nonfictional media representations of
intimacy between humans and robots. Regarding virtual agents, psychologist
Mayu Koike has looked into the role of anthropomorphism in developing
social, even romantic relationships with virtual characters (Koike et al., 2022;
Koike and Loughnan, 2021). Virtual agents—even life-size versions—are
available as companions, communication partners or romantic partners, using
the Gatebox device.4 Despite existing controversy, Bendel (2021) points out
contexts in which love dolls and sex robots could eventually be useful while at
the same time discussing the ethical issues associated with their use. Despite
the growing interest in understanding the underpinnings of positive, close, and
even intimate social relationships between humans and novel technologies,
it is clear that further research indeed is needed to better understand the
psychological underpinnings and consequences of intimate HRI (Borenstein
and Arkin, 2019).

4 See www.gatebox.ai/
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12.2.3 Robots in the workplace
A repeatedly expressed worry is that “robots will replace me in the job
market.” Since the Industrial Revolution, humans have been replacing manual
labor with machines, and the recent deployment of robots is no exception.
Robots help us to improve our productivity and thereby help to increase our
standard of living. Although robots do replace certain jobs, they also create
many new jobs, in particular for highly trained professionals. The challenge
that society is facing is that the people replaced by robots need to find new
jobs, which might require them to undertake additional training or studies.
This may be problematic or even impossible for some, for example, due to
financial or intellectual constraints.
In many cases, the acceptance of robots in various workplaces will likely

depend on their specific roles and how they are integrated into the workforce.
Reich-Stiebert and Eyssel (2015) showed that robots are preferred as assistants
in the classroom but not as the main teachers. Teachers also voiced concern
about the usage and maintenance of the robots, being particularly fearful
that the robots would take their resources in terms of time and attention.
Interestingly, primary school teachers were particularly reluctant to have
robots in schools, maybe because in their view, young students are particularly
vulnerable. An analysis of the predictors of such rather negative attitudes and
behavioral inclinations toward educational robots revealed that technology
commitment was the key predictor of positive attitudes. That is, those teachers
who were open to working with novel technologies in general felt more
positive about robots and the future use of them in their classrooms. Another
field in which people are concerned about the application of robots is assistive
robots designed for use in the home (Reich-Stiebert and Eyssel, 2015, 2013).
Again, technology commitment was found to predict people’s reluctance to
accept robots in their lives.

12.2.4 Ambivalent attitudes toward robots
Haegele (2016) claims that more and more robots will be sold on the market
in upcoming years. Their acceptance into society, however, will remain a
challenge, and further research on technology-related attitudes and how to
change them is necessary to increase society’s acceptance of robots. This is
particularly relevant in light of the current reconceptualization of attitudes
toward robots. That is, research by Stapels and Eyssel (2022, 2021) has shown
that attitudes toward robots are not—as suggested by a meta-analysis by
Naneva et al. (2020)—neutral or even mildly positive. Indeed, whereas the
notion of ambivalent attitudes has been widely studied in social psychology,
it has not been widely applied to social robots yet (Stapels and Eyssel, 2022,
2021). However, this is highly relevant because it is plausible that allegedly
neutral attitudes toward robots are actually ambivalent. What do we mean
by ambivalence? This refers to the simultaneous evaluation of the same
attitude object in both positive and negative terms. From this, a person might
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experience inner conflict, which, too, comes with distinct social and cognitive
consequences (see van Harreveld et al., 2015). Research by Stapels and Eyssel
(2022, 2021) was the first to demonstrate robot-related ambivalence, and
further data are needed that use proper attitude measurements that include
ambivalence so that the state of people’s true attitudes toward robots can be
explored. People’s ambivalence toward robots may also shift to more positive
or negative perceptions based on the context of the robot’s use, so more testing
in specific task and use contexts is important for understanding people’s
preferences about the deployment of robots in their everyday environments.

12.2.5 A more diverse and inclusive HRI
A number of researchers have joined forces to emphasize the multifaceted
notion of diversity and its value for HRI researchers, their work, and the
community at large. Diversity can be looked at from various angles, taking into
account researcher characteristics (e.g., age, gender, geographic distribution),
demographics or other features of research participants (i.e., belonging to a
social minority, being part of a vulnerable group, socioeconomic status, etc.)
under study, and how the design of the robot might affect diverse stakeholders
or embody particular social and cultural stereotypes. Research that takes
a human-centered perspective will take into account the first two aspects,
whereas robot developers also need to be mindful of how they frame and
design their robots, their appearance, and other robot characteristics. This, too,
is relevant because none of the people involved in a robot development cycle
are free from bias, and implicit as well as explicit biases may have an impact
on design choices.
Several recent overviews of HRI research suggest that the field needs to

become more inclusive and diverse in relation to the participants who are
asked to evaluate robots, the researchers who develop robots, and the contexts
in which robots are envisioned as being deployed. A systematic analysis
of the HRI literature showed that HRI, like many other scientific fields,
relies on studies from “Western, educated, industrial, rich, and democratic”
(WEIRD) populations and that there is insufficient consideration of key
axes of diversity—sex and gender, race and ethnicity, age, sexuality and
family configuration, disability, body type, ideology, and domain expertise—
in the HRI literature (Seaborn et al., 2023). Furthermore, a meta-review of
studies from HRI conferences in the 2006–2021 period found that men were
overrepresented among research participants and that the field generally treats
gender as a binary, in contradiction to best-practice guidelines (Winkle et al.,
2023a). In an overview of studies relating to sexbots as an HRI application
domain, only one study included nonmale users of these robots (González-
González et al., 2020). Finally, among robot developers, people fromWEIRD
countries are also overrepresented; we have few people from developing
nations contributing to the design of robots, and few developers focus on cre-
ating solutions that can be affordable and usable in more resource-constrained
environments, including rural or lower socioeconomic areas (Johnson et al.,
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2017). This lack of diversity in the process and aims of robotics research and
development can exacerbate bias in robot design.
To consider the interplay of bias and stereotyping in robot design, think

of what happens when we meet people: in order to initiate an impression-
formation process, we use central social categories—namely, age, ethnicity,
and gender—as reference categories to derive judgments about individuals
and their characteristics. Becausewe often do not have the time andmotivation
to process information systematically and deeply, this happens relatively
quickly and automatically. Would this translate to our impressions about
robots as well? Researchers have explored the role of various social categories
(e.g., gender, ethnicity) for robot perception by seeing if manipulating specific
visual cues or merely the name of the robot to suggest such categories will
result in a change in people’s perceptions (Eyssel and Loughnan, 2013; Eyssel
and Hegel, 2012; Bernotat et al., 2017; Bartneck et al., 2018; Perugia et al.,
2023). Studies have shown that even robots designed to be gender-neutral can
activate harmful biases in people’s perceptions of them because people bring
their previous experiences and assumptions to their understanding of robots
(Guidi et al., 2023).
When discussing bias, social psychologists like to refer to in-groups versus

out-groups, thereby differentiating between the group to which one belongs
and that is generally perceived more positively, and “the others.” This is called
in-group bias or in-group favoritism (Scheepers et al., 2006) and represents a
form of discrimination. In North America, for instance, the intergroup context
of African Americans versus Whites has been studied extensively. However,
what does this have to do with robots—and with diversity? One online study
investigated whether White American people also discriminate between in-
group (i.e., robots that look White) and out-group robots (i.e., robots that look
Black). At first glance, this experiment produced results that gave some hope:
the prediction that people would evaluate the out-group robot as having less
“mind” was not supported. However, Eyssel and Loughnan (2013) were able
to show that White American participants devalued the robot from the out-
group, especially if these people showed a high degree of modern racism.
People with racist anti-Black attitudes were also among those who ascribed
less mind to the out-group robot in terms of agency and experience. However,
it is important to note that individual attitudes did indeed play a role—
the prototypical devaluation of an out-group could only be demonstrated
when individual prejudices were taken into account. Earlier work (Eyssel and
Kuchenbrandt, 2012) found that it was not even necessary tomanipulate visual
cues for group membership. German participants presented with a picture of
the same robot with different names and country-of-production cues (Eyssel
and Kuchenbrandt, 2012) manifested in-group bias. They preferred the in-
group product over the alleged out-group platform, even at the level of design
evaluation.
Moreover, research by Correll et al. (2002) has documented that people

discriminate in a way that—not only in their laboratory experiments—can
have fatal consequences. In the classic shooter bias paradigm, photos of people
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with and without a weapon are shown. The task is to react as quickly as
possible to press the button for “shoot” in the event of danger and “do not
shoot” when unarmed persons are depicted. The skin color of the people in the
pictures had a clear influence on the reaction time. If an African American–
looking man held a gun in his hand, he was shot faster than when participants
were confronted with a White armed man. If the dark-skinned person carried
a harmless cell phone, it took participants longer to refrain from shooting.
Bartneck et al. (2018) have replicated the paradigm of the shooting bias
experiments with White versus dark-skinned in-group and out-group robots
that appeared armed versus unarmed and found analogous results, suggesting
that similar implicit racial biases can be at play in human–robot interactions
as well.
Relatedly, research by Eyssel and Hegel (2012) and Bernotat et al. (2017)

investigated the role of gender in the perception of social robots and showed
that widely known stereotypes about men and women in society are upheld
even in the context of robots. Currently, in a second wave of interest, various
researchers have focused on social categories, including gender, to explore the
potential detrimental effects of categorizing not only humans but also robots
and to demonstrate the importance of taking such features—on the part of
user, researcher, or robot—into account (Perugia and Lisy, 2022; Perugia et al.,
2022; Roesler et al., 2022; Winkle et al., 2023a). Notably, most research in the
realm of gendering of robots has explored the notion of robot or participant
gender in a dichotomous fashion—that is, contrasting “male” versus “female.”
Contemporary approaches, however, would refrain from such a dichotomous
conceptualization and integrate a more diverse, gender-fluid range of gender
categories. If one aims to research the impact of the traditional male-versus-
female gender categories on social judgments, though, it seems fair to study
exactly that. At the same time, research on other forms of gender and effects
associated with them is still scarce. Thus, this area holds a plethora of open
research questions to be investigated.
Likewise, the richness of potential robot user groups, representing persons

with cognitive, physical, or other forms of diversity (e.g., neurodiversity), is
yet to be adequately mirrored in HRI studies; the experiences of individuals
who are less frequently studied need greater inclusion. Some researchers
would argue that when doing so, it is valuable and relevant to give room to
voices from these target groups, even as part of the research process. Indeed,
this would be a truly human-centered approach.
In addressing the various sources of bias in robotics, such as those men-

tioned previously, Howard and Borenstein (2018) call on the robotics com-
munity not only to identify issues but also to create solutions to problems of
bias and racism in robotics by developing a more inclusive moral imagination
and proactive stance to address ethical issues and bias before technology
is deployed and creates negative societal effects. Howard and Kennedy III
(2020), in turn, call on the robotics community to explicitly consider ethical
use and equity in performance when designing and deploying robots, and
they discuss the formation of the Black in Robotics (BiR) community to start
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addressing some of these issues. Winkle et al. (2023b) provide a feminist
framing of work in HRI to suggest that we need to examine and challenge,
as needed, power relationships in HRI research and development. This may
involve being mindful of and at times subverting the power relationships and
hierarchies between researchers and participants, such as through participatory
design, which also provides opportunities for robot design to incorporate
more diverse voices. It can also take into account the differential effects of
robotic technologies on people who decide to purchase and deploy them (e.g.,
corporate managers) and the people who end up having to use them (e.g.,
factory floor workers). This perspective suggests it is important to empower
potential users of robots to participate more substantively in decision-making
regarding their appropriate use and deployment and for HRI researchers
to actively question the assumptions and power dynamics involved in the
research.

12.3 Conclusion

It is important to realize that robots, humans, and their interactions are part
of broader societies that encompass different kinds of people, technologies,
institutions, and practices. In these different social and cultural contexts,
people may hold different initial attitudes and beliefs about robots based
on their prior exposure to fictional narratives and popular media. Potential
users of robots will also hold different social and cultural values and norms.
Both these cultural narratives and values will affect how people perceive
and respond to robots and how the use of robots might affect existing social
structures and practices. HRI researchers should be conscious of and sensitive
to prevailing cultural narratives and values when they design and deploy
robots in society, and they should also consider whether they want robots to
reproduce or challenge existing practices and norms. HRI research, although
already quite interdisciplinary, should open upmore space to participants from
diverse sociocultural and application-oriented backgrounds to better include
the varied experiences and perspectives of those who will be affected by the
future adoption and use of robots.

Questions for you to think about:

• What was the last movie or series you watched or book you read that
depicted robots?

• List the characteristics of the robot protagonists you have recently seen
in a film or TV series. What were their capabilities? Did they appear
humanlike? Did they pose a threat to humanity, or did they save the
world?

• How will the availability of new forms of media, such as YouTube,
change people’s expectations toward robots?
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• Think of professions that have been replaced by machines. Which
ones come to mind? What are the potential positive and negative
implications of this replacement?

• Is there an activity that you are happy to have a machine do? What
is an activity that you would not want to be replaced by a machine?
How do you think others might feel about your choices—who might
disagree?

• Discuss whether it is ethical to use a social robot as comfort for lonely
elderly people. Describe relevant issues, and explain your opinion.

• In a future where highly intelligent robots are available, would it
be ethical to develop robot nannies or robot teachers? Describe the
potential issues.

• Some HRI studies are provocative or thought-provoking, for example,
Bartneck et al.’s (2018) study on the presence of racism in HRI. Is it
ethical to run controversial HRI studies? Are there particular themes,
such as religion, where HRI should not tread?

12.4 Exercises

The answers to these questions are available in the Appendix.

* Exercise 12.1 Sci-Fi media What was the last movie or series you watched
or book you read that depicted robots?

** Exercise 12.2 Bicentennial Man What is the fictional robot Andrew
Martin prepared to do to be fully recognized as a human? Select one or more
options from the following list:

It agrees not to let any other robot become human.1.
It becomes mortal.2.
It accepts becoming unaware of its own robotic nature.3.
It gives up all friendships.4.
It enters a legal trial.5.

** Exercise 12.3 Robotic revolution The robot uprising is a common theme
in the media. Why do the robots typically rebel? Select one or more options
from the following list:

They mirror humanity’s poor behavior during colonization.1.
They compete for resources with humanity and only see the option to kill
or enslave humanity.

2.

They want to protect life on Earth by removing the people that pollute it.3.
Humans programmed them to do so.4.
They are annoyed by having to take orders from less intelligent beings.5.

** Exercise 12.4 Relationship A robot companion, may it be for elderly
care, social companionship, or training for people on the autism spectrum,
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might raise ethical issues. Which of the following statements are true? Select
one or more options from the following list:

Robots are smarter and stronger than humans.1.
Robots have no legal status.2.
Robots will want to deceive humans3.
The imitation of reciprocal affect can never be as meaningful as authentic
affect.

4.

Robots could set unrealistic expectations for human-to-human relationships.5.

*** Exercise 12.5 Trust in robots Watch this video, and then answer the
question that follows.

Ayanna Howard, “Should We Trust Robots and Should They Trust Us?”
https://youtu.be/P86kv-v7XJU

Ayanna Howard discusses how the general public perceives and interacts
with robots. She explains that people often trust, perhaps even over-trust,
robots. She mentions the emotional connection to robots and people’s
preconceptions of robots based on their ideas about robots as advanced
technology as some of the reasons for this trust. Explain how these two
factors can lead to positive as well as negative outcomes—what are those
outcomes, and how do they stem from our relationships and expectations
of robots? Furthermore, how can we address these potential problems in
our design of robots?

1.

*** Exercise 12.6 Ethical issues in HRI Watch this video, and then answer
the question that follows.

KateDarling, “Ethical Issues inHuman-Robot Interaction,” https://youtu.be/
m3gp4LFgPX0?si=ztu7xUShqNYSTTT3

Kate Darling describes the new paradigm of social robots that engage with
people in diverse contexts, similarly to what we have been discussing so
far, and then points out several ethical issues that emerge from the design
of and people’s interactions with such robots. Based on her talk, explain
why social robots may be different from other robots in terms of their
ethical implications. Also describe which of the ethical implications Kate
Darling describes you found the most surprising or important. How does
this implication affect the way you think about designing social robots?

1.

Future reading:

• Jonze, dir., Spike. Her. Warner Bros., Burbank, CA, 2013. URL
www.imdb.com/title/tt1798709/?ref_=fn_al_tt_1

• Isaac Asimov’s Robot series is a collection of short stories and novels
published between 1950 and 1986 that were never formally published
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The Future

What is covered in this chapter:

• Current attitude of the general public toward robots and how this may
change in the coming years.

• Possible shifts and developments in the nature of human–robot rela-
tionships, specifically companion bots.

• Further development of the technology of human–robot interactions,
specifically artificial intelligence.

• The inherent issues with predicting the future (“crystal ball
problems”).

As with other technologies that have become common in our daily lives, such
as personal computers, smartphones, or the internet, sooner or later, we expect
robots to become assimilated into society. They may even be accepted into our
personal and even intimate spaces. Robots are currently being designed to be
coworkers, tutors, and assistants in the medical field and to provide services
in care settings, in education, in people’s homes and even in space stations
(see Figure 13.1). Research into human–robot interaction (HRI) continues
unabated, and companies keep a keen eye on social robots, releasing products
that either are fully fledged social robots, such as the Sony Aibo (Figure 2.10),
or that take inspiration from HRI and interaction design research, such as
digital home assistants.
Technological advances make this vision increasingly real but alone are

not sufficient to move us closer to a future with robots. Recent polls in the
United States and Europe show that overall, robots are considered desirable
for jobs that people find too hard or undesirable. But the public takes a more
reserved attitude when it comes to social robots that provide companionship,
care, and other socially assistive and interactive applications (Smith, 2014;
European Commission, 2017). In general, people tend to have a welcoming
and positive attitude toward robots, although some HRI studies have shown
that on occasion, some people experience fairly high levels of robot anxiety
and other negative attitudes toward robots, resulting in a low willingness to
interact with robots in their personal space or workplace settings (Reich-
Stiebert and Eyssel, 2013, 2015). Any technical and societal revolution evokes
strong responses, both positive and negative, and social robots are not going
to be any different.
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Figure 13.1 The
Cimon robot
(2018–present),
built by the German
Aerospace Center,
Airbus, and IBM,
assists astronauts on
the International
Space Station.
(Source: National
Aeronautics and
Space
Administration)

As technology advances and social robots become more common, people
will have more opportunities to experience the potential and limitations of the
technology and may become more accepting of them through mere exposure.
As we mentioned in our discussion of nonverbal cues, direct interaction with
members of another social group—in this case, robots—changes attitudes and
decreases anxiety related to that group (Crisp and Turner, 2013; Pettigrew
et al., 2011). Wullenkord (2017) showed that just imagining collaborative
interaction with a Nao robot prior to actually interacting with it improved
attitudes and reactions toward the robot and increased the perceived quality of
the interaction. We can therefore expect that as people have increased contact
with robots, be it directly or through the media, attitudes will become more
positive, and the willingness to use robots will increase over time.
As we have seen in the rest of this book, however, advances in HRI

research can significantly speed up this process. By better understanding
people’s concerns, mapping societal needs, and identifying opportunities for
automation, we can create interactions that will be positive and beneficial
to people and society as a whole. As with any technological revolution, the
introduction of social robots will be slow at first, with daring companies
releasing new products and early adopters buying and using these, thereby
providing valuable real-life lessons on what interactive devices and robots
couldmean to us (Hoffman, 2019). End users have high expectations for social
robots, and such commercial products tend to overpromise and underdeliver.
But recent years have witnessed a positive feedback loop between new
revolutions in artificial intelligence (AI), academic research, industry efforts,
and the tech market, with products integrated into social robots becoming
commercially successful. Speech recognition, natural-language processing,
and visual understanding of social and physical context are now found in
thousands of products, and their success is likely to be the origin of the success
of social robots.
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We also need to consider that the media frequently portray robots negatively
or unrealistically. For example, there has been much talk of robots, instead
of people, looking after those in need of assistance in our aging societies.
This is not a pleasant thought, if only because it confronts us with a reality in
which human contact has become increasingly rare and where we need robotic
technology to substitute for human warmth. The way this future scenario is
portrayed by the media, however, is unrealistic. This manner of framing robots
in society may sell newspapers, but it creates undue anxiety and distracts
us from what robots could really contribute. In eldercare, cuddly animal-
like robots are already used, much to the satisfaction of the elderly residents,
families, and staff.
We are often quick to judge, and robots evoke strong emotions. Facilitating

an open mind about novel developments in technology and science might
be a step toward achieving a more positive view and a stronger sense
of acceptance by the general public. These changes can only be observed
through longitudinal studies, and HRI scholars must work together with the
communities they seek to serve to consider how technological developments
can come together with societal structures to produce positive change. There
is no quick “technological fix” for societal problems, such as demographic
change. Besides developing much-needed technologies, it is also crucial to
take a human-centered approach that focuses on the actual psychological,
social, and emotional needs of the people using and being affected by robots.
A more human-centered view coupled with technological advancement will
together create robust and socially appropriate robots that can benefit us all.

13.1 The nature of human–robot relationships

When waiting to check in at the airport, a machine handles the check-in
process. In Japan, Pepper robots greet us when we enter a bank or a shop.
When care is provided mainly by machines rather than humans, this has strong
implications for the development and maintenance of human relationships.
Even currently, many technologies, such as mobile phones, social networks,
and online games, have resulted in less face time between people and vast
changes in interpersonal communication. Instead of writing letters or meeting
in person, people communicate via messages on Snapchat or WhatsApp. Our
patterns of when we talk to whom about what are changing (see Figure 13.2),
as are the ways we begin and end our romantic relationships—by smartphone.
Robots may contribute to further estrangement among people, as argued by
Turkle (2017), or robots could be designed to support and even increase
interaction among people. This effect has been seen with the seal-like robot
Paro in a day home, in which older adults ended up meeting and talking more
to others when the robot was put in a public space (Wada and Shibata, 2007).
Clearly, as social robots and AI are developed further, they will likely play

an increasingly larger role in our everyday lives and society. Because the
nature of human–robot relationships is a product of the robots’ capabilities and
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Figure 13.2 Odds
of getting into a
friendship-ending
argument before and
after the
introduction of
smartphones.
(Source: XKCD)

the users’ preferences, these developments are inevitably tied to the question
of what issues we consider ethical and desirable to address with robots and
AI.
For example, one major societal issue at the moment is loneliness. Feeling

socially connected to others has an almost incredible list of benefits for
individual mental and physical health (Vaillan, 2015). This will become
increasingly relevant as the populations of developed countries continue to
age in the upcoming decades. An increasing part of the population is in need
of care, not just for attending to their physical needs of feeding, bathing,
and clothing but for emotional care as well. It might be that the younger
generations are neither willing nor competently able to serve these dual needs
on their own. Particularly, the emotional needs of seniors or people with
cognitive or physical impairments have to be taken into account, but all people
are in danger of growing more and more lonely and disconnected (American
Osteopathic Association, 2016).
The lack of social connection can have a serious impact on our psycholog-

ical well-being and health. The “need to belong,” a key motivation of human
nature (Baumeister and Leary, 1995), can easily become disrupted. To illus-
trate, research by Eisenberger et al. (2003) shed light on the neuroanatomical
underpinnings of reactions to social exclusion, whereas Williams (2007) has
documented the negative social consequences of exclusionary status. That is,
when the need to belong is violated, people not only feel a lower sense of
belonging but also experience lower self-esteem, feel less in control, and even
regard their existence as less meaningful than when their inclusionary status
is not under threat. In addition, the risk of developing Alzheimer’s disease
is double in lonely people compared to socially connected individuals, and
loneliness is a predictor of a decline in cognitive abilities (Shankar et al.,
2013). In light of the detrimental effects of loneliness on quality of life and
psychological and cognitive functioning, robots could play an important role
in mediating these effects.
A few commercial start-ups have been offering artificially intelligent “com-

panions,” although so far with onlymodest success, such as Gatebox’s “Living
With” project. If AI and robots are developed to the point where they can
reliably imitate human interaction patterns, they could be extremely helpful
in relieving feelings of boredom and loneliness.

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



254 The Future

What remains to be seen is how comfortable people are with the different
potential roles that AI may take on. As the quest for strong or general AI
continues, the question of whether such AI is desirable is heard ever louder.
Whereas the most spectacular version of this question considers how we
can ensure that such an AI would remain benevolent to the human race, it
is at least as interesting to consider the issue of whether people would be
comfortable with handing over power in the first place. Assume that strong
AI is developed, the sole purpose of which is to enhance the well-being of
society while adhering to a set of rules that keep it from harming humans
(e.g., Asimov’s Laws of Robotics; see Section 12.2). Can we throw out all
the concerns about self-interest, bias, and hidden political agendas that are
inherent to human leadership and, instead, fully trust that the AI would take
proper care (see Figure 13.3)? Would we agree with such a setup?

Figure 13.3 Not
everyone is charmed
by the idea of strong
AI. The late
theoretical physicist
Stephen William
Hawking and the
entrepreneur and
engineer Elon Musk
have both been
vocal critics against
the development of
strong AI.

13.2 The technology of HRI

HRI is lifted on the tides of technological progress. New sensors and actuators
and continuous developments in AI are quickly adopted into HRI applications.
Given the steady progress in AI and its applications, there is every reason to
believe that a number of technical problems that currently still require the
smoke and mirrors of Wizard-of-Oz (WoZ) control will soon be delivered
autonomously by the robot.
Progress in HRI is not so much held back by a lack of development in

robotic hardware but, rather, by a lack of progress in autonomous control and
AI. Testament to this is the ability of human operators to hold a meaningful
interaction through a robot. It is clearly not the limited view through the
sensors and the limited expressivity of the actuators that hinder the interaction.
Rather, it is the artificial cognition—substituted by real cognition in the case
of WoZ control—that is lacking. There is, of course, room for improvement in
robot hardware: the speed and power of actuators need work, and the energy
autonomy of robots needs to improve drastically. Furthermore, robotics and
social robotics in particular have always taken a “Frankenstein approach”
to hardware, building robots from whatever technology is readily available
rather than developing radically new hardware solutions. But at this point,
breakthroughs in HRI are most likely to come from progress in robot control
andAI.Machine learning holds considerable promise here. However, there are
fundamental barriers to the use of machine learning in HRI. Because machine
learning requires vast amounts of annotated data and computational time, it
comes to its own in domains that allow offline learning and for which huge
amounts of training data are available or, when not available, can be generated.
Although there is plenty of human interaction going on in the world, these
interactions run in real-time. As opposed to machine learning of how to play
the game of chess or Go, where the learning can run as fast as computers
will allow, machine learning of HRI strategies inherently runs online. No
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matter how fast the computer is, the interaction pace is dictated by the human
interaction partner, and the evaluation and updates of themachine learningwill
run in “human time” rather than in computer time. One solution for facilitating
machine learning for HRI might be to use more robots and data from more
interactions: pooling interaction events could be a solution to the dearth of HRI
data and could speed up the evaluation of learned interaction strategies. It is
unclear what the next technological breakthroughs will be in AI and robotics,
but one thing is clear: HRI will readily absorb them.

13.3 Crystal ball problems

Predicting the future is hard to do, and especially in the field of HRI, it seems
as if every stance imaginable is defended with passion by a small army of
experts (and a large group of those wishing to be experts), ranging from
doomsday predictions to nirvana forecasts. The Tesla company, for example,
made grandiose promises in 2022 for its Optimus humanoid robot, not only
about its unrealistically affordable price but also about its unprecedented
abilities. Promises that are yet to be delivered.
It proves to be nearly impossible to gain consensus on the far future of HRI

and even on small and concrete predictions of how long it will take to develop
a specific capability or what we actually want from a robot. Just as with AI,
all bets are off. Still, it is clear that robot butlers—such as the Able Mabel
housemaid robot envisioned by the BBC in 1966—remain elusive.
First, we can perhaps take some lessons from developments in AI, which

have been rapid yet unable to match early expectations. When the initial ideas
around AI were first introduced in the 1950s, it was expected that strong
AI would be available within a few decades (McCorduck, 1979; Russell and
Norvig, 2022). Half a century later, AI still struggles with understanding the
real world. And although progress has been impressive on some fronts—think
about recent developments in natural-language interaction—advances have
been uneven. It seems that when data are available in abundance and learning
is cheap to evaluate, then AI can learn fast and even achieve superhuman
performance. This was famously shown by the Deep Blue computer program
beating the world champion Gary Kasparov at chess in the late 1990s (Camp-
bell et al., 2002), as well as recent victories in ever more complex games such
as Go (Murphy, 2016) and Stratego. Because the fortunes of robotics are often
tied to those of AI, we can expect to see similar trends in social robotics, with
robots getting superhuman abilities on some fronts while lagging on others.
In recent years, there have been numerous start-ups and large corporations

venturing into the social robotics market. Buoyed by technological break-
throughs, they build novel products looking for equally novel use cases.
But building and especially selling social robots remains challenging. Most
commercial social robots are available for a few years, and after lower-than-
expected sales, the companies then pull the products from the market. We
cannot help but notice that many of the robots we discuss and show in this
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book are no longer available. We should not forget that it is still the early days
for commercial social robots. Just as for countless other technologies—the
mobile phone, the smartphone, the personal computer, and the MP3 player,
to name but a few—early and therefore brave ventures at introducing social
robots on the market will know winners and losers, but victory belongs to
those who believe in it the most and believe in it the longest.
This raises the question of whether we are really capable of knowing what

we want from a robot. What we think we want robots to do today is likely not
going to be what robots will be doing in the future. The interplay between our
needs and technological abilities will more likely result in applications we can
currently barely imagine. As demonstrated in this book, it is good to widen the
range of perspectives involved in our discussions when building a future with
robots.
There are lessons we can learn from the history and recent successes in AI.

Although deep learning has achieved remarkable progress, it is important to
acknowledge that past expectations often led to excessive optimism followed
by disappointment. Two previous AI booms serve as examples of this pattern.
The first occurred in the 1950swhen predictions about the emergence of strong
AI were made. The second boom took place in the 1970s, with the belief that
we could capture all existing knowledge in formal representations. Although
these periods ultimately led to two of several AI winters, AI research persisted
and contributed to the development of fundamental knowledge in pattern
recognition, such as notable advancements in neural networks. This paved the
way for the eventual success of the latest breakthroughs in pattern recognition,
fueled by increased computational power and access to vast amounts of data.
Similarly, although some start-ups focusing on robotics might fail, boom-and-
bust cycles in social robots are likely to occur. Predicting which ventures will
succeed and when remains a challenging task. Nevertheless, we firmly believe
that our understanding of HRI will be central to future commercial successes.

Questions for you to think about:

• Which technological developments and related social developments
have surprised you the most in your lifetime?

• What kind of future would you want to see with robots? What kind of
future would you be afraid of or concerned about?

• How much time do you spend interacting with people face to face
versus in mediated environments (e.g., Facebook, conference call)?
What about nonhuman agents—do you interact with them at all? In
what circumstances and how much?

• Who is caring for your grandparents or parents? What kind of com-
munity do they live in? Do you live close to them? Who do you think
will take care of you in the future?What kind of community might you
find yourself living in?
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13.4 Exercises

The answers to these questions are available in the Appendix.

** Exercise 13.1 Loneliness What consequences are typically associated
with loneliness? Select one or more options from the following list:

Reduced self-esteem1.
Increased risk of developing Alzheimer’s disease2.
Decline in cognitive abilities3.
Reduced physiological abilities4.
Reduced financial income5.
Lack of perceived control6.
Increased risk of developing cancer7.

** Exercise 13.2 Technology What technology is mainly holding back HRI?
Select one option from the following list:

The development of sensors1.
The development of actuators2.
The development of power storage and delivery3.
The development in AI4.
The development of smart materials5.

* Exercise 13.3 Face time How do you predominantly communicate with
your friends? Select one option from the following list:

Through mediated communication environments (e.g., Facebook, Insta-
gram, Zoom, Skype, etc.)

1.

Through face-to-face communication2.

* Exercise 13.4 Contact With whom do you have more physical contact on
a daily basis? Select one option from the following list:

Your partner (or friends)1.
Your mobile phone2.

* Exercise 13.5 Parents Do you want a robot to take care of your parents
when they can no longer care for themselves? Select one option from the
following list:

Yes1.
No2.

***** Exercise 13.6 HRI movie analysis Watch a movie (or one or two
episodes of a TV series) of your choice in which robots play a major role.
Pay close attention to HRI and how it is depicted in the film; you’ll probably
want to take notes as you watch. Then write up a short analysis of the HRI
components of the movie. Do not just give a summary or review of the movie
itself; address the ways in which humans and robots interact and communicate
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with each other. You can include visuals from the film in your analysis, if you
like. You should also explicitly refer to any connections to the HRI themes
that you read about in this book.
Some examples of relevant films and TV shows are as follows:ExMachina;

Wall-E; Westworld; Moon; The Iron Giant; Star Wars; Silent Running; Short
Circuit; 2001: A Space Odyssey; The Hitchhiker’s Guide to the Galaxy; A.I.;
I, Robot;Metropolis; Ghost in the Shell; Astro Boy; Frank and the Robot; and
Human.
Your review should address the following questions:

What roles do the robots have in society? What kinds of tasks do they
perform? Where do they interact with people?

1.

What are the channels or modalities that people use to communicate with
the robots? How does their communication evolve?

2.

What modes of expression do the robots use to communicate with people?
What about with each other?

3.

What are the consequences of robots in society? How do people react to
the robots—positively or negatively—and do their reactions change over
time? What could be done to make negative consequences or reactions
more positive?

4.

What do you think are the hard and easy social and technical problems
involved with developing HRI of the sort shown in themovie? Also include
potential ethical issues resulting from using robots in society.

5.

Future reading:

• Future of Life Institute. An open letter—Research priorities for robust
and beneficial artificial intelligence, January 2015. URL https://futu
reoflife.org/ai-open-letter/

• Nourbakhsh, Illah Reza. Robot Futures. MIT Press, Cambridge, MA,
2013. ISBN 9780262018623. URL http://worldcat.org/oclc/945438
245

• Wilson, Daniel H. How to Survive a Robot Uprising: Tips on Defend-
ing Yourself against the Coming Rebellion. Bloomsbury, London, New
York, 2005. ISBN 9781582345925. URL http://worldcat.org/oclc/10
29483559

• Cribb, Jo, and Glover, David. Don’t Worry about the Robots. Allen &
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Appendix: Answers

This appendix presents the answers to all the questions, quizzes, and exercises
from all the chapters. We hope that you enjoyed these challenges and that you
find the answers enlightening.

Exercise 2.1 The correct answer is: 2.

Exercise 2.2 The correct answer is your choice.

Exercise 2.3 The correct answer is open-ended.

Exercise 3.1 The correct answers are: 1, 3, 5, 7.

Exercise 3.2 The correct answers are: 2, 3, 5.

Exercise 3.3 The depth camera allows Pepper to measure its distance from
other objects, which is needed, for example, to avoid collision. The capacitive
touch sensor allows Pepper to register pressure on the hand, which is needed,
for example, to avoid the robot trying to push its hand through an object or
for it to register when a human is tapping its hand for attention. The inertial
measurement unit allows Pepper to measure its bodily orientation, which is
fundamental for balance and localization.

Exercise 3.4 The correct answers are: 1, 4, 5, 6.

Exercise 3.5 The correct answers are: 1, 3, 4.

Exercise 3.6 The correct answer is: 4.

Exercise 3.7 The correct answer is: 2.

Exercise 3.8 The correct answer is: 6.

Exercise 3.9 The correct answer is: 2.

Exercise 3.10 The correct answer is: 2.

Exercise 3.11 The correct answers are: 1, 2.

Exercise 3.12 The correct answers are: 2, 4, 5.

259

© copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2024. 
https://www.human-robot-interaction.org

This material has been published by Cambridge University Press as Human-Robot Interaction by 
Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 

ISBN: 9781009424233 (https://www.cambridge.org/9781009424233). 
This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.



260 Appendix: Answers

Exercise 3.13 The correct answers are: 1, 3 (Option 2 is only true if transfer
learning was done with a pretrainedmodel; otherwise, training for a computer-
vision task generally requires at least thousands of data points. Option 4 is
completely false; don’t chose this. Option 5 is not really true; we should care
about the topology, considering the characteristic of the task, and CNN is
usually the best for simple image classification.)

Exercise 3.14 The correct answer is open-ended, but it should mention some
of the sensors and actuators and perhaps AI techniques described in the
chapter.

Exercise 4.1 The correct answer is open-ended. Show your images to your
teacher, friends, and family. Do they see the faces?

Exercise 4.2 The sequence should be: 1 = E, 2 = D, 3 = C, 4 = B, 5 = A.

Exercise 4.3 The correct answer is open-ended.

Exercise 5.1 The correct answers are: 1 → 𝑎, 2 → 𝑑, 3 → 𝑏, 4 → 𝑐

Exercise 5.2 The correct answer is: 3.7 m.

Exercise 5.3 The correct answer is: 1.2 m.

Exercise 5.4 The correct answer is: 0.5 m.

Exercise 5.5 The correct answer is: 3.7 m.

Exercise 5.6 This is an open-ended question, so answers can vary, but they
may involve the robots learning the map of the environment and, in the case
of the home, the preferences of individual users. In the public space, users
would be more numerous and may not repeat, so the adaptations might be to
the specific cultural norms of the general context.

Exercise 6.1 The correct answer is: 2.

Exercise 6.2 The correct answer is open-ended.

Exercise 6.3 1. False; it is both conscious and unconscious (but more often
unconscious than conscious).
2. True
3. False
4. False
5. True
6. False; it is used for other social behavior as well (e.g., joint attention).
7. True; although it was covered in a different chapter (Chapter 5), how close
or far you position yourself from someone else is a form of nonverbal behavior.

Exercise 7.1 The correct answer is: 2.
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Exercise 7.2 The correct answer is: 4.

Exercise 7.3 The correct answers are: 2, 3, 4.

Exercise 7.4 The correct answer is: 5.

Exercise 8.1 The correct answer is: 3.

Exercise 8.2 The correct answers are: 4, 5.

Exercise 8.3 The correct answers are: 2, 4, 5.

Exercise 9.1 The correct mapping is:

Afraid → A1.
Angry → A2.
Astonished → B3.
Bored → C4.
Calm → D5.
Content → D6.
Delighted → B7.
Depressed → C8.
Frustrated → C9.
Happy → B10.
Relaxed → D11.
Tired → C12.

Exercise 9.2 The correct answer is: 3.

Exercise 9.3 The correct answers are: 1, 4, 5.

Exercise 9.4 The correct answer is open-ended.

Exercise 10.1 The correct answer is: 3.

Exercise 10.2 The correct answer is: 4.

Exercise 10.3 The correct answer is: 1.

Exercise 10.4 The correct answer is: 4.

Exercise 10.5 The correct answers are: 1, 5.

Exercise 10.6 The correct answer is: 4.

Exercise 10.7 The correct answer is: 3.

Exercise 10.8 The correct answer is: 1 = c, 2 = b, 3 = a.

Exercise 11.1 The correct answers are: 1, 4, 5.

Exercise 11.2 The correct answers are: 2, 5.
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Exercise 11.3 The correct answers are: 1, 2, 3, 5, 6, 10, 12.

Exercise 11.4 The correct answers are: 1, 5.

Exercise 11.5 The correct answer is: 2.

Exercise 12.1We hope you enjoyed the story. What are you planning to watch
next?

Exercise 12.2 The correct answers are: 2, 5.

Exercise 12.3 The correct answers are: 1, 2.

Exercise 12.4 The correct answers are: 4, 5.

Exercise 12.5 The correct answer is open-ended.

Exercise 12.6 The answer is open-ended.

Exercise 13.1 The correct answers are: 1, 2, 3, 6.

Exercise 13.2 The correct answer is: 5.

Exercise 13.3 Is your choice a good choice?

Exercise 13.4 Is your choice a good choice?

Exercise 13.5 Explain your choice.

Exercise 13.6 The answer is open-ended.
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